当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probing the Growth Kinetics for the Formation of Uniform 1D Block Copolymer Nanoparticles by Living Crystallization-Driven Self-Assembly
ACS Nano ( IF 17.1 ) Pub Date : 2018-09-12 00:00:00 , DOI: 10.1021/acsnano.8b01353
Charlotte E Boott 1 , Erin M Leitao 1, 2 , Dominic W Hayward 1 , Romain F Laine 3 , Pierre Mahou 3 , Gerald Guerin 4 , Mitchell A Winnik 4 , Robert M Richardson 5 , Clemens F Kaminski 3 , George R Whittell 1 , Ian Manners 1
Affiliation  

Living crystallization-driven self-assembly (CDSA) is a seeded growth method for crystallizable block copolymers (BCPs) and related amphiphiles in solution and has recently emerged as a highly promising and versatile route to uniform core–shell nanoparticles (micelles) with control of dimensions and architecture. However, the factors that influence the rate of nanoparticle growth have not been systematically studied. Using transmission electron microscopy, small- and wide-angle X-ray scattering, and super-resolution fluorescence microscopy techniques, we have investigated the kinetics of the seeded growth of poly(ferrocenyldimethylsilane)-b-(polydimethylsiloxane) (PFS-b-PDMS), as a model living CDSA system for those employing, for example, crystallizable emissive and biocompatible polymers. By altering various self-assembly parameters including concentration, temperature, solvent, and BCP composition our results have established that the time taken to prepare fiber-like micelles via the living CDSA method can be reduced by decreasing temperature, by employing solvents that are poorer for the crystallizable PFS core-forming block, and by increasing the length of the PFS core-forming block. These results are of general importance for the future optimization of a wide variety of living CDSA systems. Our studies also demonstrate that the growth kinetics for living CDSA do not exhibit the first-order dependence of growth rate on unimer concentration anticipated by analogy with living covalent polymerizations of molecular monomers. This difference may be caused by the combined influence of chain conformational effects of the BCP on addition to the seed termini and chain length dispersity.

中文翻译:

通过活性结晶驱动自组装探索形成均匀一维嵌段共聚物纳米粒子的生长动力学

活性结晶驱动自组装 (CDSA) 是一种可结晶嵌段共聚物 (BCP) 和溶液中相关两亲物的种子生长方法,最近已成为一种非常有前景的通用途径,可通过控制尺寸和架构。然而,尚未系统地研究影响纳米粒子生长速率的因素。使用透射电子显微镜、小角度和广角 X 射线散射和超分辨率荧光显微镜技术,我们研究了聚二茂铁基二甲基硅烷)-b-(聚二甲基硅氧烷)(PFS-b)的晶种生长动力学-PDMS),作为模型活 CDSA 系统,适用于那些采用例如可结晶发射和生物相容性聚合物的人。通过改变各种自组装参数,包括浓度、温度、溶剂和 BCP 组成,我们的结果已经确定了制备纤维状胶束所需的时间可通过降低温度、使用对可结晶的 PFS 成芯块较差的溶剂以及通过增加 PFS 成芯块的长度来减少活性 CDSA 方法。这些结果对于未来各种活的 CDSA 系统的优化具有普遍的重要性。我们的研究还表明,活 CDSA 的生长动力学没有表现出生长速率对单聚体浓度的一级依赖性,这与分子单体的活共价聚合反应类似。这种差异可能是由于 BCP 的链构象效应对种子末端和链长分散性的综合影响造成的。
更新日期:2018-09-12
down
wechat
bug