当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anion-Induced Electron Transfer
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2018-09-07 00:00:00 , DOI: 10.1021/acs.accounts.8b00197
Sourav Saha 1
Affiliation  

As counterintuitive as it might seem, in aprotic media, electron transfer (ET) from strong Lewis basic anions, particularly F, OH, and CN, to certain π-acids (πA) is not only spectroscopically evident from the formation of paramagnetic πA•– radical anions and πA2– dianions, but also thermodynamically justified because these anions’ highest occupied molecular orbitals (HOMOs) lie above the π-acids’ lowest unoccupied molecular orbitals (LUMOs) creating negative free energy changes (ΔG°ET < 0). Depending on the relative HOMO and LUMO energies of participating anions and π-acids, respectively, the anion-induced ET (AIET) events take place either in the ground state or upon photosensitization of the π-acids. The mild basic and charge-diffuse anions with lower HOMO levels fail to trigger ET, but they often form charge transfer (CT) and anion−π complexes. Owing to their high HOMO levels in aprotic environments, strong Lewis basic anions, such as F enjoy much greater ET driving force (ΔG°ET) than mild and non-basic anions, such as iodide. In protic solvents, however, the former become more solvated and stabilized and lose their electron donating ability more than the latter, creating an illusion that F is a poor electron donor due to the high electronegativity of fluorine. However, UV–vis, EPR, and NMR studies consistently show that in aprotic environments, F reduces essentially any π-acid with LUMO levels of −3.8 eV or less, revealing that contrary to a common perception, the electron donating ability of F anion is not dictated by the electronegativity of fluorine atom but is a true reflection of high Lewis basicity of the anion itself. Thus, the neutral fluorine atoms with zero formal charge and F anion have little in common when it comes to their electronic properties. The F anion can also legitimately act as a Brønsted base when the proton source has a pKa lower than that of its conjugate acid HF (15), not the other way around, and ET from F to a poor electron acceptor is not thermodynamically feasible. While there is no shortage of indisputable evidence and clear-cut thermodynamic justifications for ET from F and other Lewis basic anions to various π-acids in aprotic solvents, because of the aforesaid misconception, it had been posited that F perhaps formed diamagnetic Meisenheimer complexes via nucleophilic attack, deprotonated an aprotic solvent DMSO against an insurmountably high pKa (35) leading to a π-acid reduction, or formed [F/πA•+] complexes via a thermodynamically prohibited oxidation of π-acids. Unlike AIET, however, none of these hypotheses was thermodynamically viable nor supported by any experimental evidence.

中文翻译:

阴离子诱导的电子转移

由于违反直觉的,因为它看起来,在非质子传递媒体,从强路易斯碱性阴离子,特别是F的电子转移(ET)-,OH -和CN - ,某些π共酸(πA)不仅从形成光谱明显顺磁性πA • -自由基阴离子和πA 2-二价阴离子,而且热力学合理的,因为这些阴离子最高占据分子轨道(候牟司)位于该π酸以上最低未占分子轨道(LUMOS)创建负自由能变化(Δ ģ ° ET<0)。分别取决于参与的阴离子和π酸的相对HOMO和LUMO能量,阴离子诱导的ET(AIET)事件在基态或π酸的光敏作用下发生。具有较低HOMO含量的温和碱性和电荷扩散阴离子无法触发ET,但它们通常形成电荷转移(CT)和阴离子-π络合物。由于其在非质子环境中的较高HOMO含量,强力的Lewis碱性阴离子(例如F )比温和非碱性阴离子(例如碘化物)享有更大的ET驱动力(ΔG ° ET)。但是,在质子传递溶剂中,前者变得比后者更溶剂化和稳定,并且失去了更多的供电子能力,从而产生了一种幻想,即F 由于氟的高电负性,它是一个不良的电子供体。但是,UV-VIS,EPR和NMR研究一致表明,在质子惰性的环境中,F -本质上降低了任何π共酸与LUMO能级-3.8电子伏特或更小,表明相反到共同的感知,给电子的F能力阴离子不是由氟原子的电负性决定的,而是对阴离子本身高路易斯碱性的真实反映。因此,零形式电荷和F中性氟原子-负离子有什么共同之处,当涉及到他们的电子特性。在F -阴离子也可以合法地充当当质子源具有p布朗斯台德碱ķ一个比其共轭酸HF(15)低,反之亦然,并且从F 到不良电子受体的ET在热力学上不可行。虽然对于ET从F无争的证据和明确的热力学理据不足-以及其它路易斯碱性阴离子各种π酸,因为上述的误解,在非质子溶剂,它已被假定那个F -或许形成抗磁迈森海梅通过亲核攻击形成复合物,使质子惰性溶剂DMSO去质子化,以克服无法克服的高p K a(35)导致π酸还原,或形成[F /πA •+通过热力学上禁止的π酸的氧化而形成络合物。但是,与AIET不同,这些假设在热力学上都不可行,也没有任何实验证据支持。
更新日期:2018-09-07
down
wechat
bug