当前位置: X-MOL 学术npj Mater. Degrad. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of proteins in the degradation of relatively inert alloys in the human body
npj Materials Degradation ( IF 5.1 ) Pub Date : 2018-09-07 , DOI: 10.1038/s41529-018-0049-y
Yolanda S. Hedberg

Many biomedical materials used today for applications such as orthopedic, dental, and cardiovascular implants and devices are made of corrosion-resistant, ‘inert’, metallic materials of the cobalt–chromium, titanium, and stainless steel alloy groups. This perspective focuses on the role of proteins in the degradation of these materials in a human body environment. After adsorption, the proteins interact relatively slowly with the metal and metal surface oxide. A number of factors, including the individual body chemistry (especially the presence of inflammatory cells producing oxidative species), determine whether the proteins can bind to metals in the surface oxide and whether the metal–protein conjugates can detach from the surface. Metals in the forms of protein-bound metal ions or nanosized particles can also increase protein–protein interactions and aggregation, which can cause some health effects and change the material degradation mechanism. While proteins in some short-term studies (<6 h) even decrease material degradation due to shielding effects and better lubrication, they may increase degradation after longer time periods due to relatively slow binding, detachment, and combined corrosion processes. In-vitro material degradation studies of relatively corrosion-resistant alloys for biomedical applications should therefore include long-term studies, complexing agents or proteins, and realistic oxidative environments simulating inflammatory conditions.



中文翻译:

蛋白质在人体中相对惰性合金的降解中的作用

如今,许多用于矫形,牙科和心血管植入物和设备等应用的生物医学材料都是由耐腐蚀的“惰性”钴-铬,钛和不锈钢合金族的金属材料制成的。这种观点集中于蛋白质在人体环境中降解这些物质中的作用。吸附后,蛋白质与金属和金属表面氧化物的相互作用相对较慢。许多因素,包括个体的身体化学特性(特别是存在产生氧化性物质的炎性细胞),决定了蛋白质是否可以与表面氧化物中的金属结合以及金属-蛋白质结合物是否可以从表面脱离。蛋白质结合的金属离子或纳米粒子形式的金属也可以增加蛋白质与蛋白质的相互作用和聚集,这可能对健康产生某些影响,并改变材料的降解机理。尽管在某些短期研究中(<6小时),由于屏蔽作用和更好的润滑作用,蛋白质甚至可以减少材料降解,但由于结合,分离和腐蚀过程相对较慢,它们在较长时间后可能会增加降解。因此,针对生物医学应用的相对耐腐蚀合金的体外材料降解研究应包括长期研究,络合剂或蛋白质以及模拟炎症条件的实际氧化环境。尽管在某些短期研究中(<6小时),由于屏蔽作用和更好的润滑作用,蛋白质甚至可以减少材料降解,但由于结合,分离和腐蚀过程相对较慢,它们在较长时间后可能会增加降解。因此,针对生物医学应用的相对耐腐蚀合金的体外材料降解研究应包括长期研究,络合剂或蛋白质以及模拟炎症条件的实际氧化环境。尽管在某些短期研究中(<6小时),由于屏蔽作用和更好的润滑作用,蛋白质甚至可以减少材料降解,但由于结合,分离和腐蚀过程相对较慢,它们在较长时间后可能会增加降解。因此,针对生物医学应用的相对耐腐蚀合金的体外材料降解研究应包括长期研究,络合剂或蛋白质以及模拟炎症条件的实际氧化环境。

更新日期:2019-05-16
down
wechat
bug