当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sandwich architecture of SnSnSb alloy nanoparticles and N-doped reduced graphene oxide sheets as a high rate capability anode for lithium-ion batteries
Journal of Power Sources ( IF 9.2 ) Pub Date : 2018-09-05 , DOI: 10.1016/j.jpowsour.2018.08.058
Sambedan Jena , Arijit Mitra , Arghya Patra , Srijan Sengupta , Karabi Das , Subhasish B. Majumder , Siddhartha Das

In this article, we report an active-matrix type SnSnSb alloy, which is sandwiched between nitrogen doped reduced graphene oxide (N-rGO) sheets in the form of a nanocomposite, as a high rate capability anode for lithium-ion batteries. The alloy nanocomposite is synthesized via a cheap and industrially scalable route of microwave-assisted hydrothermal synthesis, and is coated onto electrodeposited 3D microporous nickel foam current collector. The additional mechanical buffering, along with effective electron conduction and lithium ion diffusion pathways provided by N-rGO nanosheets and nickel foam, result in a specific capacity of ∼300 mAhg−1 at a specific current of 4 A g-1 by preventing both pulverization and delamination of the active material. This combination of properties in N-rGO decorated SnSnSb nanocomposite anode (with 40 wt% N-rGO) on nickel foam results in a 2nd cycle discharge specific capacity of 705 mAhg−1, with a stable reversible specific capacity of 500 mAhg−1 after 200 cycles @ 0.1 A g-1. The nanocomposite anode also shows capacity retention of 400 mAhg−1 @ 0.8 A g-1 (1C rate) for 120 cycles. As compared to low N-rGO (10 wt%) decorated nanocomposite, the high N-rGO (40 wt%) nanocomposite shows improved performance with a nominal sacrifice of capacity which is at par, if not superior, to the existing commercial graphitic anodes.



中文翻译:

Sn的SnSb合金纳米颗粒和N掺杂的还原氧化石墨烯片的三明治结构作为锂离子电池的高倍率阳极

在本文中,我们报告了一种活性基质型Sn SnSb合金,该材料夹在以纳米复合材料形式掺杂的氮掺杂还原氧化石墨烯(N-rGO)片之间,是锂离子电池的高倍率能力阳极。合金纳米复合材料是通过廉价的,工业上可扩展的微波辅助水热合成路线合成的,并涂覆在电沉积的3D微孔镍泡沫集电器上。的额外的机械缓冲,以有效沿电子传导和锂离子的扩散路径被N-RGO纳米片和泡沫镍,结果在约300 mAhg的比容量设置-1处的特定的电流4 A G -1通过防止活性物质的粉碎和分层。在镍泡沫上用N-rGO装饰的Sn SnSb纳米复合阳极(含40 wt%N-rGO)中的这种性能组合导致第二次循环放电比容量为705 mAhg -1,稳定的可逆比容量为500 mAhg -1在200次循环后@ 0.1 A g -1。纳米复合阳极还显示出在120 A循环下,在0.8 A g -1(1C速率)下的容量保持为400 mAhg -1。与低N-rGO(10 wt%)装饰的纳米复合材料相比,高N-rGO(40 wt%)纳米复合材料显示出改善的性能,但名义上的容量损失与现有的商用石墨阳极相当,甚至不超标。 。

更新日期:2018-09-05
down
wechat
bug