当前位置: X-MOL 学术Biomacromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature-Dependent Complex Coacervation of Engineered Elastin-like Polypeptide and Hyaluronic Acid Polyelectrolytes
Biomacromolecules ( IF 6.2 ) Pub Date : 2018-09-05 00:00:00 , DOI: 10.1021/acs.biomac.8b00837
James D. Tang , Steven R. Caliari , Kyle J. Lampe

Coacervates have enormous potential due to their diverse functional properties supporting a wide number of applications in personal care products, pharmaceuticals, and food processing. Normally, separation of coacervate phases is induced by changes in pH, ionic strength, and/or polyelectrolyte concentration. This study investigates the microphase separation and coacervate complex formation of two natural polyelectrolytes, elastin-like polypeptides (ELPs) and hyaluronic acid (HA), as simple models for biological coacervates. These complex coacervates are formed over a wide range of stoichiometric molar charge ratios without the presence of salt or changes in pH and are primarily induced by changes in temperature. Unlike pure ELP solutions, the ELP/HA coacervates result in well-formed spherical particles after the temperature-induced phase transition. We also note that the formation of these complex coacervates is reversible with low hysteresis. We have demonstrated via fluorescent imaging and dynamic light scattering that high positive/negative charge ratios at elevated temperatures produced 400–600 nm particles with relatively low polydispersity indices (PDIs) of ∼0.1. Furthermore, dynamic light scattering, fluorescence microscopy, and optical microscopy revealed that the ratio of the two polyions strongly influenced the size and structure of these ELP/HA complex coacervates. Finally, we showed that the ELP/HA coacervates were able to sequester the hydrophobic fluorescent molecule pyrene, highlighting their potential for use as delivery vehicles for hydrophobic payloads.

中文翻译:

工程化的弹性蛋白样多肽和透明质酸聚电解质的温度依赖性复合凝聚

凝聚层由于其多种功能特性而具有巨大的潜力,可支持个人护理产品,药品和食品加工中的多种应用。通常,凝聚层相的分离是由pH值,离子强度和/或聚电解质浓度的变化引起的。这项研究调查了两种天然聚电解质,弹性蛋白样多肽(ELPs)和透明质酸(HA)的微相分离和凝聚层复合物的形成,它们是生物凝聚层的简单模型。这些复杂的凝聚层是在很宽的化学计量摩尔电荷比范围内形成的,没有盐的存在或pH值的变化,并且主要是由温度变化引起的。与纯ELP解决方案不同,在温度诱导的相变后,ELP / HA凝聚层形成了良好形成的球形颗粒。我们还注意到,这些复合凝聚层的形成是可逆的,具有低磁滞现象。我们已经通过荧光成像和动态光散射证明,在升高的温度下,高正/负电荷比产生了400-600 nm的粒子,其多分散指数(PDI)较低,约为〜0.1。此外,动态光散射,荧光显微镜和光学显微镜显示,两个聚离子的比例强烈影响这些ELP / HA复合物凝聚层的大小和结构。最后,我们表明ELP / HA凝聚层能够隔离疏水性荧光分子pyr,突显了它们可用作疏水性有效负载的运载工具的潜力。我们还注意到,这些复合凝聚层的形成是可逆的,具有低磁滞现象。我们已经通过荧光成像和动态光散射证明,在升高的温度下,高正/负电荷比产生了400-600 nm的粒子,其多分散指数(PDI)较低,约为〜0.1。此外,动态光散射,荧光显微镜和光学显微镜显示,两个聚离子的比例强烈影响这些ELP / HA复合物凝聚层的大小和结构。最后,我们表明ELP / HA凝聚层能够隔离疏水性荧光分子pyr,突显了它们可用作疏水性有效负载的运载工具的潜力。我们还注意到,这些复合凝聚层的形成是可逆的,具有低磁滞现象。我们已经通过荧光成像和动态光散射证明,在升高的温度下,高正/负电荷比产生了400-600 nm的粒子,其多分散指数(PDI)较低,约为〜0.1。此外,动态光散射,荧光显微镜和光学显微镜显示,两个聚离子的比例强烈影响这些ELP / HA复合物凝聚层的大小和结构。最后,我们表明ELP / HA凝聚层能够隔离疏水性荧光分子pyr,突显了它们可用作疏水性有效负载的运载工具的潜力。我们已经通过荧光成像和动态光散射证明,在升高的温度下,高正/负电荷比产生了400-600 nm的粒子,其多分散指数(PDI)较低,约为〜0.1。此外,动态光散射,荧光显微镜和光学显微镜显示,两个聚离子的比例强烈影响这些ELP / HA复合物凝聚层的大小和结构。最后,我们表明ELP / HA凝聚层能够隔离疏水性荧光分子pyr,突显了它们可用作疏水性有效负载的运载工具的潜力。我们已经通过荧光成像和动态光散射证明,在升高的温度下,高正/负电荷比产生了400-600 nm的粒子,其多分散指数(PDI)较低,约为〜0.1。此外,动态光散射,荧光显微镜和光学显微镜显示,两个聚离子的比例强烈影响这些ELP / HA复合物凝聚层的大小和结构。最后,我们表明ELP / HA凝聚层能够隔离疏水性荧光分子pyr,突显了它们可用作疏水性有效负载的运载工具的潜力。动态光散射,荧光显微镜和光学显微镜显示,两个聚离子的比例强烈影响这些ELP / HA复合物凝聚层的大小和结构。最后,我们表明ELP / HA凝聚层能够隔离疏水性荧光分子pyr,突显了它们可用作疏水性有效负载的运载工具的潜力。动态光散射,荧光显微镜和光学显微镜显示,两个聚离子的比例强烈影响这些ELP / HA复合物凝聚层的大小和结构。最后,我们表明ELP / HA凝聚层能够隔离疏水性荧光分子pyr,突显了它们可用作疏水性有效负载的运载工具的潜力。
更新日期:2018-09-05
down
wechat
bug