当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Climate-induced changes in continental-scale soil macroporosity may intensify water cycle
Nature ( IF 64.8 ) Pub Date : 2018-09-01 , DOI: 10.1038/s41586-018-0463-x
Daniel R. Hirmas , Daniel Giménez , Attila Nemes , Ruth Kerry , Nathaniel A. Brunsell , Cassandra J. Wilson

Soil macroporosity affects field-scale water-cycle processes, such as infiltration, nutrient transport and runoff1,2, that are important for the development of successful global strategies that address challenges of food security, water scarcity, human health and loss of biodiversity3. Macropores—large pores that freely drain water under the influence of gravity—often represent less than 1 per cent of the soil volume, but can contribute more than 70 per cent of the total soil water infiltration4, which greatly magnifies their influence on the regional and global water cycle. Although climate influences the development of macropores through soil-forming processes, the extent and rate of such development and its effect on the water cycle are currently unknown. Here we show that drier climates induce the formation of greater soil macroporosity than do more humid ones, and that such climate-induced changes occur over shorter timescales than have previously been considered—probably years to decades. Furthermore, we find that changes in the effective porosity, a proxy for macroporosity, predicted from mean annual precipitation at the end of the century would result in changes in saturated soil hydraulic conductivity ranging from −55 to 34 per cent for five physiographic regions in the USA. Our results indicate that soil macroporosity may be altered rapidly in response to climate change and that associated continental-scale changes in soil hydraulic properties may set up unexplored feedbacks between climate and the land surface and thus intensify the water cycle.Soil macroporosity responds rapidly to climate variations and may induce wide-ranging changes in soil hydraulic conductivity by the end of the century.

中文翻译:

气候引起的大陆尺度土壤大孔隙变化可能会加剧水循环

土壤大孔隙度影响田间规模的水循环过程,例如渗透、养分输送和径流 1,2,这对于制定成功的全球战略以应对粮食安全、水资源短缺、人类健康和生物多样性丧失 3 等挑战非常重要。大孔隙——在重力作用下自由排水的大孔隙——通常占土壤体积的不到 1%,但可以贡献土壤总水分入渗量的 70%以上4,这极大地放大了它们对区域和土壤的影响。全球水循环。尽管气候通过土壤形成过程影响大孔隙的发育,但这种发育的程度和速率及其对水循环的影响目前尚不清楚。在这里,我们表明,与更潮湿的气候相比,较干燥的气候会导致更大的土壤大孔隙度的形成,并且这种气候引起的变化发生在比以前认为的更短的时间尺度上——可能是几年到几十年。此外,我们发现,根据本世纪末年平均降水量预测的有效孔隙度(大孔隙度的代表)的变化将导致 5 个自然地理区域的饱和土壤导水率发生变化,范围从 -55% 到 34%。美国。我们的研究结果表明,土壤大孔隙度可能会因气候变化而迅速改变,并且土壤水力特性的相关大陆尺度变化可能会在气候和地表之间建立未经探索的反馈,从而加剧水循环。
更新日期:2018-09-01
down
wechat
bug