当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage
Nature ( IF 64.8 ) Pub Date : 2018-08-01 , DOI: 10.1038/s41586-018-0424-4
Vincent Humphrey , Jakob Zscheischler , Philippe Ciais , Lukas Gudmundsson , Stephen Sitch , Sonia I. Seneviratne

Land ecosystems absorb on average 30 per cent of anthropogenic carbon dioxide (CO2) emissions, thereby slowing the increase of CO2 concentration in the atmosphere1. Year-to-year variations in the atmospheric CO2 growth rate are mostly due to fluctuating carbon uptake by land ecosystems1. The sensitivity of these fluctuations to changes in tropical temperature has been well documented2–6, but identifying the role of global water availability has proved to be elusive. So far, the only usable proxies for water availability have been time-lagged precipitation anomalies and drought indices3–5, owing to a lack of direct observations. Here, we use recent observations of terrestrial water storage changes derived from satellite gravimetry7 to investigate terrestrial water effects on carbon cycle variability at global to regional scales. We show that the CO2 growth rate is strongly sensitive to observed changes in terrestrial water storage, drier years being associated with faster atmospheric CO2 growth. We demonstrate that this global relationship is independent of known temperature effects and is underestimated in current carbon cycle models. Our results indicate that interannual fluctuations in terrestrial water storage strongly affect the terrestrial carbon sink and highlight the importance of the interactions between the water and carbon cycles.The growth rate of global atmospheric CO2 concentration is faster in drier years, independently of temperature; this relationship is underestimated in current carbon cycle models.

中文翻译:

大气 CO2 增长率对观测到的陆地储水变化的敏感性

陆地生态系统平均吸收 30% 的人为二氧化碳 (CO2) 排放,从而减缓大气中二氧化碳浓度的增加1。大气二氧化碳增长率的逐年变化主要是由于陆地生态系统对碳吸收的波动1。这些波动对热带温度变化的敏感性已得到充分证明2-6,但事实证明,确定全球水资源可用性的作用是难以捉摸的。到目前为止,由于缺乏直接观测,唯一可用的水资源可用性替代指标是时滞降水异常和干旱指数 3-5。在这里,我们使用最近对卫星重力测量得出的陆地储水变化的观察来研究陆地水对全球到区域尺度的碳循环变异性的影响。我们表明 CO2 增长率对观测到的陆地储水变化非常敏感,干燥年份与更快的大气 CO2 增长有关。我们证明了这种全球关系独立于已知的温度效应,并且在当前的碳循环模型中被低估了。我们的研究结果表明,陆地储水量的年际波动强烈影响陆地碳汇,并突出了水循环和碳循环之间相互作用的重要性。全球大气 CO2 浓度的增长率在干旱年份更快,与温度无关;目前的碳循环模型低估了这种关系。我们证明了这种全球关系独立于已知的温度效应,并且在当前的碳循环模型中被低估了。我们的研究结果表明,陆地储水量的年际波动强烈影响陆地碳汇,并突出了水循环和碳循环之间相互作用的重要性。全球大气 CO2 浓度的增长率在干旱年份更快,与温度无关;目前的碳循环模型低估了这种关系。我们证明了这种全球关系独立于已知的温度影响,并且在当前的碳循环模型中被低估了。我们的研究结果表明,陆地储水量的年际波动强烈影响陆地碳汇,并突出了水循环和碳循环之间相互作用的重要性。全球大气 CO2 浓度的增长率在干旱年份更快,与温度无关;目前的碳循环模型低估了这种关系。我们的研究结果表明,陆地储水量的年际波动强烈影响陆地碳汇,并突出了水循环和碳循环之间相互作用的重要性。全球大气 CO2 浓度的增长率在干旱年份更快,与温度无关;目前的碳循环模型低估了这种关系。我们的研究结果表明,陆地储水量的年际波动强烈影响陆地碳汇,并突出了水循环和碳循环之间相互作用的重要性。全球大气 CO2 浓度的增长率在干旱年份更快,与温度无关;目前的碳循环模型低估了这种关系。
更新日期:2018-08-01
down
wechat
bug