当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices
Chemical Reviews ( IF 62.1 ) Pub Date : 2018-08-22 00:00:00 , DOI: 10.1021/acs.chemrev.8b00241
Hao Chen 1 , Min Ling 1, 2 , Luke Hencz 1 , Han Yeu Ling 1 , Gaoran Li 2 , Zhan Lin 3 , Gao Liu 4 , Shanqing Zhang 1
Affiliation  

Tremendous efforts have been devoted to the development of electrode materials, electrolytes, and separators of energy-storage devices to address the fundamental needs of emerging technologies such as electric vehicles, artificial intelligence, and virtual reality. However, binders, as an important component of energy-storage devices, are yet to receive similar attention. Polyvinylidene fluoride (PVDF) has been the dominant binder in the battery industry for decades despite several well-recognized drawbacks, i.e., limited binding strength due to the lack of chemical bonds with electroactive materials, insufficient mechanical properties, and low electronic and lithium-ion conductivities. The limited binding function cannot meet inherent demands of emerging electrode materials with high capacities such as silicon anodes and sulfur cathodes. To address these concerns, in this review we divide the binding between active materials and binders into two major mechanisms: mechanical interlocking and interfacial binding forces. We review existing and emerging binders, binding technology used in energy-storage devices (including lithium-ion batteries, lithium–sulfur batteries, sodium-ion batteries, and supercapacitors), and state-of-the-art mechanical characterization and computational methods for binder research. Finally, we propose prospective next-generation binders for energy-storage devices from the molecular level to the macro level. Functional binders will play crucial roles in future high-performance energy-storage devices.

中文翻译:

探索用于高级储能设备的粘合剂的化学,机械和电气功能

为了解决诸如电动汽车,人工智能和虚拟现实等新兴技术的基本需求,人们一直致力于开发电极材料,电解质和储能装置的隔板。然而,作为能量存储装置的重要组成部分的粘合剂尚未受到类似的关注。聚偏二氟乙烯(PVDF)几十年来一直是电池行业的主要粘合剂,尽管存在几个公认的缺点,即由于与电活性材料之间缺乏化学键,机械性能不足以及低电子和锂离子,导致粘合强度受到限制。电导率。有限的结合功能不能满足新兴的高容量电极材料(例如硅阳极和硫阴极)的内在需求。为了解决这些问题,在这篇综述中,我们将活性材料和粘合剂之间的结合分为两个主要机制:机械互锁和界面结合力。我们回顾了现有和新兴的粘合剂,储能设备(包括锂离子电池,锂硫电池,钠离子电池和超级电容器)中使用的粘合剂技术,以及最新的机械表征和计算方法粘合剂研究。最后,我们提出了从分子水平到宏观水平的储能器件的下一代粘合剂。功能性粘合剂将在未来的高性能储能设备中发挥关键作用。机械联锁和界面结合力。我们回顾了现有和新兴的粘合剂,储能设备(包括锂离子电池,锂硫电池,钠离子电池和超级电容器)中使用的粘合剂技术,以及最新的机械表征和计算方法粘合剂研究。最后,我们提出了从分子水平到宏观水平的储能器件的下一代粘合剂。功能性粘合剂将在未来的高性能储能设备中发挥关键作用。机械联锁和界面结合力。我们回顾了现有和新兴的粘合剂,储能设备(包括锂离子电池,锂硫电池,钠离子电池和超级电容器)中使用的粘合剂技术,以及最新的机械表征和计算方法粘合剂研究。最后,我们提出了从分子水平到宏观水平的储能器件的下一代粘合剂。功能性粘合剂将在未来的高性能储能设备中发挥关键作用。以及用于粘合剂研究的最新机械表征和计算方法。最后,我们提出了从分子水平到宏观水平的储能器件的下一代粘合剂。功能性粘合剂将在未来的高性能储能设备中发挥关键作用。以及用于粘合剂研究的最新机械表征和计算方法。最后,我们提出了从分子水平到宏观水平的储能器件的下一代粘合剂。功能性粘合剂将在未来的高性能储能设备中发挥关键作用。
更新日期:2018-08-22
down
wechat
bug