当前位置: X-MOL 学术Acta Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique
Acta Biomaterialia ( IF 9.7 ) Pub Date : 2018-08-17 , DOI: 10.1016/j.actbio.2018.08.014
Weizhong Wang , Wei Nie , Xiaojun Zhou , Wei Feng , Liang Chen , Qianqian Zhang , Zhengwei You , Qiusheng Shi , Chen Peng , Chuanglong He

Innterconnected porous architecture is critical for tissue engineering scaffold as well as biomimetic nanofibrous structure. In addition, a paradigm shift is recently taking place in the scaffold design from homogeneous porous scaffold to heterogeneous porous scaffold for the complex tissues. In this study, a versatile and simple one-pot method, dual phase separation, is developed to fabricate macroporous nanofibrous scaffold by phase separating the mixture solutions of immiscible polymer blends without using porogens. The macropores in the scaffold are interconnected, and their size can be tuned by the polymer blend ratio. Moreover, benefiting from the easy operation of dual phase separation technique, an innovative, versatile and facile two-step phase separation method is developed to fabricate heterogeneous porous layered nanofibrous scaffolds with different shapes, such as bilayered tubular scaffold and tri-layered cylindrical scaffold. The bilayered tubular nanofibrous scaffold composed of poly(L-lactic acid) (PLLA)/poly(L-lactide-co-ε-caprolactone) (PLCL) microporous inner layer and PLLA/poly(ε-caprolactone) (PCL) macroporous outer layer matches simultaneously the functional growth of endothelial cells (ECs) and smooth muscle cells (SMCs), and shows the favorable performance for potential small diameter blood vessel application. Therefore, this study provides the novel and facile strategies to fabricate macroporous nanofibrous scaffold and heterogeneous porous layered nanofibrous scaffold for tissue engineering applications.

Statement of Significance

The fabrication of porous tissue engineering scaffold made of non-water-soluble polymer commonly requires the use of porogen materials. This is complex and time-consuming, resulting in greater difficulty to prepare heterogeneous porous layered scaffold for multifunctional tissues repair, such as blood vessel and osteochondral tissue. Herein, a novel, versatile and simple one-pot dual phase separation technique is developed for the first time to fabricate porous scaffold without using porogens. Simultaneously, it also endows the resultant scaffold with the biomimetic nanofibrous architecture. Based on the easy operation of this dual phase separation technique, a facile two-step phase separation method is also put forward for the first time and applied in fabricating heterogeneous porous layered nanofibrous scaffold for tissue engineering applications.



中文翻译:

两步相分离技术制备异质多孔双层纳米纤维血管移植物

相互连接的多孔结构对于组织工程支架以及仿生纳米纤维结构至关重要。另外,最近在支架设计中发生了范式转变,从复杂的多孔支架到均质的多孔支架。在这项研究中,开发了一种通用且简单的一锅法双相分离技术,该方法通过不使用致孔剂将不混溶的聚合物共混物的混合物溶液进行相分离来制造大孔纳米纤维支架。支架中的大孔是相互连接的,其大小可以通过聚合物的混合比进行调整。此外,得益于易于操作的双相分离技术,开发了一种通用且简便的两步相分离方法来制造具有不同形状的异质多孔层状纳米纤维支架,例如双层管状支架和三层圆柱形支架。双层管状纳米纤维支架,由聚(L-乳酸)(PLLA)/聚(L-丙交酯-ε-己内酯)(PLCL)微孔内层和PLLA /聚(ε-己内酯)(PCL)大孔外层组成该层同时匹配内皮细胞(EC)和平滑肌细胞(SMC)的功能性生长,并显示出潜在的小直径血管应用的良好性能。因此,本研究提供了新颖且简便的策略来制造用于组织工程应用的大孔纳米纤维支架和异质多孔层状纳米纤维支架。例如双层管状脚手架和三层圆柱形脚手架。双层管状纳米纤维支架,由聚(L-乳酸)(PLLA)/聚(L-丙交酯-ε-己内酯)(PLCL)微孔内层和PLLA /聚(ε-己内酯)(PCL)大孔外层组成该层同时匹配内皮细胞(EC)和平滑肌细胞(SMC)的功能性生长,并显示出潜在的小直径血管应用的良好性能。因此,本研究提供了新颖且简便的策略来制造用于组织工程应用的大孔纳米纤维支架和异质多孔层状纳米纤维支架。例如双层管状脚手架和三层圆柱形脚手架。双层管状纳米纤维支架,由聚(L-乳酸)(PLLA)/聚(L-丙交酯-ε-己内酯)(PLCL)微孔内层和PLLA /聚(ε-己内酯)(PCL)大孔外层组成该层同时匹配内皮细胞(EC)和平滑肌细胞(SMC)的功能性生长,并显示出潜在的小直径血管应用的良好性能。因此,本研究提供了新颖且简便的策略来制造用于组织工程应用的大孔纳米纤维支架和异质多孔层状纳米纤维支架。双层管状纳米纤维支架,由聚(L-乳酸)(PLLA)/聚(L-丙交酯-ε-己内酯)(PLCL)微孔内层和PLLA /聚(ε-己内酯)(PCL)大孔外层组成该层同时匹配内皮细胞(EC)和平滑肌细胞(SMC)的功能性生长,并显示出潜在的小直径血管应用的良好性能。因此,本研究提供了新颖且简便的策略来制造用于组织工程应用的大孔纳米纤维支架和异质多孔层状纳米纤维支架。双层管状纳米纤维支架,由聚(L-乳酸)(PLLA)/聚(L-丙交酯-ε-己内酯)(PLCL)微孔内层和PLLA /聚(ε-己内酯)(PCL)大孔外层组成该层同时匹配内皮细胞(EC)和平滑肌细胞(SMC)的功能性生长,并显示出潜在的小直径血管应用的良好性能。因此,本研究提供了新颖且简便的策略来制造用于组织工程应用的大孔纳米纤维支架和异质多孔层状纳米纤维支架。并显示出潜在的小直径血管应用的良好性能。因此,本研究提供了新颖且简便的策略来制造用于组织工程应用的大孔纳米纤维支架和异质多孔层状纳米纤维支架。并显示出潜在的小直径血管应用的良好性能。因此,本研究提供了新颖且简便的策略来制造用于组织工程应用的大孔纳米纤维支架和异质多孔层状纳米纤维支架。

重要声明

由非水溶性聚合物制成的多孔组织工程支架的制造通常需要使用致孔剂材料。这是复杂且费时的,导致制备用于多功能组织修复的异质多孔层状支架(例如血管和骨软骨组织)的难度更大。本文中,首次开发了新颖,通用且简单的单锅双相分离技术,以在不使用致孔剂的情况下制造多孔支架。同时,它也使所得支架具有仿生纳米纤维结构。基于这种双相分离技术的简便操作,

更新日期:2018-08-17
down
wechat
bug