当前位置: X-MOL 学术Polym. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An ionic liquid crystal-based solid polymer electrolyte with desirable ion-conducting channels for superior performance ambient-temperature lithium batteries†
Polymer Chemistry ( IF 4.6 ) Pub Date : 2018-08-14 00:00:00 , DOI: 10.1039/c8py00951a
Shi Wang 1, 2, 3, 4 , Xu Liu 1, 2, 3, 4 , Ailian Wang 1, 2, 3, 4 , Zhinan Wang 1, 2, 3, 4 , Jie Chen 1, 2, 3, 4 , Qinghui Zeng 1, 2, 3, 4 , Xuefei Wang 1, 2, 3, 4 , Liaoyun Zhang 1, 2, 3, 4
Affiliation  

Almost all the traditional ionic liquids lack liquid crystal properties. Only a small number of ionic liquids show liquid crystal properties, which can be named as ionic liquid crystals (ILCs). The liquid crystal characteristics of ILCs endow them with good ordering. More specifically, the ILC macroscopic alignment of phase-segregated ordered nanostructures can be considered as ion pathways and further fixed by photopolymerization to fabricate nanostructured ion-conductive electrolyte films. However, there are no reports using ILC-based solid polymer electrolytes (SPEs) for solid-state polymer lithium batteries (SSPLBs). Here, a free-standing and flexible SPE through photopolymerization of ILC/poly(ethylene glycol) diacrylate/poly(ethylene glycol) dimethyl ether/LiBF4 for SSPLBs was first designed and then successfully prepared. The as-obtained ILC-based SPE exhibits superior comprehensive electrochemical properties in terms of high ionic conductivity (1.96 × 10−4 S cm−1, 30 °C) and a wide electrochemical window (5.2 V). Particularly, the SPE delivers a high transference number of Li+ (0.6) due to the construction of ion channels for efficient transport of Li+. More importantly, the SPE also shows good interface contact with electrodes and can effectively suppress the growth of lithium dendrites. Thus, ILC-based SPE LiFePO4/Li cells present excellent long cycling stability (the average discharge capacity is ∼164 mA h g−1 with coulombic efficiency close to 100% throughout 375 cycles at 0.2 C) and superior rate capability at room temperature. Even at 0 °C, the SSPLBs can run very well. Our study opens a new way for ILC-based SPE to be practically applied in SSPLBs and also provides major progress on addressing the challenges of room temperature/low temperature SSPLBs.

中文翻译:

基于离子液晶的固体聚合物电解质,具有理想的离子导电通道,可用于性能优异的常温锂电池

几乎所有传统的离子液体都缺乏液晶性能。只有少量的离子液体显示液晶特性,可以将其称为离子液晶(ILC)。ILC的液晶特性使其具有良好的有序性。更具体地,相分离的有序纳米结构的ILC宏观取向可以被认为是离子通道,并且可以通过光聚合进一步固定以制造纳米结构的离子导电电解质膜。然而,没有关于将基于ILC的固态聚合物电解质(SPE)用于固态聚合物锂电池(SSPLB)的报道。在这里,通过ILC /聚乙二醇二丙烯酸酯/聚乙二醇二甲醚/ LiBF 4的光聚合,形成了一种独立且灵活的固相萃取首先设计了SSPLB,然后成功进行了准备。如此获得的基于ILC的SPE在高离子电导率(1.96×10 -4 S cm -1,30 °C)和宽的电化学窗口(5.2 V)方面表现出优异的综合电化学性能。特别地,由于离子通道的构造,SPE传递了高的Li +转移数(0.6),以有效传输Li +。更重要的是,SPE还显示出与电极的良好界面接触,并可以有效地抑制锂树枝状晶体的生长。因此,基于ILC的SPE LiFePO 4 / Li电池具有出色的长循环稳定性(平均放电容量约为164 mA hg -1在0.2 C下的375个循环中,库仑效率接近100%),在室温下具有出色的定速能力。即使在0°C,SSPLB仍可以很好地运行。我们的研究为基于ILC的SPE在SSPLB中的实际应用开辟了一条新途径,并为应对室温/低温SSPLB的挑战提供了重大进展。
更新日期:2018-08-14
down
wechat
bug