当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing antiphase boundaries by atomic control of heterointerfaces [Physics]
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2018-09-18 , DOI: 10.1073/pnas.1808812115
Zhen Wang 1, 2 , Hangwen Guo 3 , Shuai Shao 4 , Mohammad Saghayezhian 1 , Jun Li 2 , Rosalba Fittipaldi 5 , Antonio Vecchione 5 , Prahald Siwakoti 1 , Yimei Zhu 2 , Jiandi Zhang 1 , E W Plummer 3
Affiliation  

Extended defects are known to have critical influences in achieving desired material performance. However, the nature of extended defect generation is highly elusive due to the presence of multiple nucleation mechanisms with close energetics. A strategy to design extended defects in a simple and clean way is thus highly desirable to advance the understanding of their role, improve material quality, and serve as a unique playground to discover new phenomena. In this work, we report an approach to create planar extended defects—antiphase boundaries (APB) —with well-defined origins via the combination of advanced growth, atomic-resolved electron microscopy, first-principals calculations, and defect theory. In La2/3Sr1/3MnO3 thin film grown on Sr2RuO4 substrate, APBs in the film naturally nucleate at the step on the substrate/film interface. For a single step, the generated APBs tend to be nearly perpendicular to the interface and propragate toward the film surface. Interestingly, when two steps are close to each other, two corresponding APBs communicate and merge together, forming a unique triangle-shaped defect domain boundary. Such behavior has been ascribed, in general, to the minimization of the surface energy of the APB. Atomic-resolved electron microscopy shows that these APBs have an intriguing antipolar structure phase, thus having the potential as a general recipe to achieve ferroelectric-like domain walls for high-density nonvolatile memory.



中文翻译:

通过异质界面的原子控制设计反相边界 [物理学]

众所周知,扩展缺陷对实现所需的材料性能具有关键影响。然而,由于存在具有接近能量学的多种成核机制,扩展缺陷产生的性质非常难以捉摸。因此,非常需要一种以简单、干净的方式设计扩展缺陷的策略,以促进对其作用的理解,提高材料质量,并作为发现新现象的独特游乐场。在这项工作中,我们报告了一种通过结合先进生长、原子分辨电子显微镜、第一原理计算和缺陷理论来创建具有明确起源的平面扩展缺陷——反相边界(APB)的方法。在Sr 2 RuO 4衬底上生长的La 2/3 Sr 1/3 MnO 3薄膜中,薄膜中的APB在衬底/薄膜界面的台阶处自然成核。对于单个步骤,生成的 APB 往往几乎垂直于界面并向薄膜表面传播。有趣的是,当两个台阶彼此靠近时,两个相应的APB会通信并合并在一起,形成独特的三角形缺陷域边界。一般来说,这种行为归因于 APB 表面能的最小化。原子分辨电子显微镜表明,这些 APB 具有有趣的反极性结构相,因此有可能作为实现高密度非易失性存储器的类铁电畴壁的通用配方。

更新日期:2018-09-19
down
wechat
bug