当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2018-08-13 , DOI: 10.1038/s41565-018-0227-7
John A. Tomko , Abdon Pena-Francesch , Huihun Jung , Madhusudan Tyagi , Benjamin D. Allen , Melik C. Demirel , Patrick E. Hopkins

The dynamic control of thermal transport properties in solids must contend with the fact that phonons are inherently broadband. Thus, efforts to create reversible thermal conductivity switches have resulted in only modest on/off ratios, since only a relatively narrow portion of the phononic spectrum is impacted. Here, we report on the ability to modulate the thermal conductivity of topologically networked materials by nearly a factor of four following hydration, through manipulation of the displacement amplitude of atomic vibrations. By varying the network topology, or crosslinked structure, of squid ring teeth-based bio-polymers through tandem-repetition of DNA sequences, we show that this thermal switching ratio can be directly programmed. This on/off ratio in thermal conductivity switching is over a factor of three larger than the current state-of-the-art thermal switch, offering the possibility of engineering thermally conductive biological materials with dynamic responsivity to heat.



中文翻译:

拓扑网络生物启发材料中的可调热传输和可逆热导率转换

固体中热传递特性的动态控制必须与声子固有地为宽带这一事实相抗衡。因此,创建可逆热导率开关的努力仅导致适度的通/断比,因为仅影响了声子谱的相对狭窄的部分。在这里,我们报告了通过控制原子振动的位移幅度,在水化后将拓扑网络材料的热导率调节近四倍的能力。通过改变DNA序列的串联重复,改变基于鱿鱼齿齿的生物聚合物的网络拓扑结构或交联结构,我们证明了这种热转换比可以直接编程。

更新日期:2018-12-10
down
wechat
bug