当前位置: X-MOL 学术Surf. Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interactions of incident H atoms with metal surfaces
Surface Science Reports ( IF 9.8 ) Pub Date : 2018-07-24 , DOI: 10.1016/j.surfrep.2018.06.001
Michelle S. Hofman , Dwayne Z. Wang , Yuxin Yang , Bruce E. Koel

Atomic hydrogen is a highly reactive species of interest because of its role in a wide range of applications and technologies. Knowledge about the interactions of incident H atoms on metal surfaces is important for our understanding of many processes such as those occurring in plasma-enhanced catalysis and nuclear fusion in tokamak reactors. Herein we review some of the numerous experimental surface science studies that have focused on the interactions of H atoms that are incident on low-Miller index metal single-crystal surfaces. We briefly summarize the different incident H atom reaction mechanisms and several of the available methods to create H atoms in UHV environments before addressing the key thermodynamic and kinetic data available on metal and modified metal surfaces. Generally, H atoms are very reactive and exhibit high sticking coefficients even on metals where H2 molecules do not dissociate under UHV conditions. This reactivity is often reduced by adsorbates on the surface, which also create new reaction pathways. Abstraction of surface-bound D(H) adatoms by incident H(D) atoms often occurs by an Eley-Rideal mechanism, while a hot atom mechanism produces structural effects in the abstraction rates and forms homonuclear products. Additionally, incident H atoms can often induce surface reconstructions and populate subsurface and bulk absorption sites. The absorbed H atoms recombine to desorb H2 at lower temperature and can also exhibit higher subsequent reactivity with adsorbates than surface-bound H adatoms. Incident H atoms, either directly or via sorbed hydrogen species, hydrogenate adsorbed hydrocarbons, sulfur, alkali metals, oxygen, halogens, and other adatoms and small molecules. Thus, H atoms from the gas phase incident on surfaces and adsorbed layers create new reaction channels and products beyond those found from interactions of H2 molecules. Detailed aspects of the dynamics and energy transfer associated with these interactions and the important applications of hydrogen in plasma processing of semiconductors are beyond the scope of this review.



中文翻译:

入射氢原子与金属表面的相互作用

氢原子由于其在广泛的应用和技术中的作用而成为令人关注的高反应性物质。了解金属表面上入射的H原子之间的相互作用的知识对于我们理解许多过程非常重要,例如等离子体增强催化中发生的过程以及托卡马克反应堆中的核聚变过程。本文中,我们回顾了许多实验表面科学研究中的一些,这些研究集中于入射在低密勒指数金属单晶表面上的H原子的相互作用。在解决金属和改性金属表面上的关键热力学和动力学数据之前,我们简要概述了不同的入射H原子反应机理以及在特高压环境中产生H原子的几种可用方法。一般来说,2个分子在超高压条件下不会解离。这种反应性通常会因表面上的吸附物而降低,这也会产生新的反应途径。入射的H(D)原子对表面结合的D(H)原子的抽象化通常是通过Eley-Rideal机理发生的,而热原子机理则以抽象速率产生结构效应并形成同核产物。此外,入射的H原子通常会引起表面重建,并在地下和大量吸收位点中占据重要位置。吸收的H原子重组以解吸H 2在较低的温度下,与表面吸附的H原子相比,其与被吸附物的后续反应性更高。入射的H原子直接或通过吸附的氢原子氢化吸附的碳氢化合物,硫,碱金属,氧,卤素和其他原子和小分子。因此,来自气相的H原子入射到表面和吸附层上,产生了新的反应通道和产物,这些通道和产物超出了从H 2分子的相互作用中发现的那些。与这些相互作用相关的动力学和能量转移的详细方面,以及氢在半导体等离子处理中的重要应用,不在本综述的讨论范围之内。

更新日期:2018-07-24
down
wechat
bug