当前位置: X-MOL 学术ACS Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electric-Field Manipulation of a Compartmentalized Cell-Free Gene Expression Reaction
ACS Synthetic Biology ( IF 4.7 ) Pub Date : 2018-07-23 00:00:00 , DOI: 10.1021/acssynbio.8b00160
Yuval Efrat 1 , Alexandra M. Tayar 1 , Shirley S. Daube 1 , Michael Levy 1 , Roy H. Bar-Ziv 1
Affiliation  

Direct electric-field manipulation of gene expression reactions would simplify the design of biochemical networks by replacing complex biomolecular interactions with push-button operations. Here, we applied a localized electric field gradient at megahertz frequency to manipulate a cell-free gene-expression reaction in a DNA compartment on a chip. We broke the spatial symmetry of a homogeneous reaction in the compartment by creating a trap for macromolecules in a region of maximal field intensity localized 50 μm from immobilized DNA. Free of biochemical regulation, we demonstrated protein synthesis oscillations by on/off switching of the electric field. In response to the field, ribosomes, RNA polymerases, and nascent RNA and proteins accumulated in the trap, and were then depleted from the DNA region where gene expression occurred. The resulting reduction in the rate of protein synthesis recovered back to steady-state when the field was off. The combination of electric field with compartmentalized cell-free gene expression reactions creates a simple, label-free approach for controlling biomolecules in space and time, opening possibilities for hybrid biological systems with a bioelectronic interface based on minimal biological parts design.

中文翻译:

隔室无细胞基因表达反应的电场操纵

基因表达反应的直接电场操纵将通过用按钮操作代替复杂的生物分子相互作用来简化生化网络的设计。在这里,我们应用了兆赫兹频率的局部电场梯度,以操纵芯片上DNA隔室中的无细胞基因表达反应。我们通过在固定化DNA的最大场强区域定位了50μm的区域中创建了一个大分子陷阱,打破了隔室中均相反应的空间对称性。没有生化调节,我们通过电场的开/关来证明蛋白质合成的振荡。响应该领域,核糖体,RNA聚合酶以及新生的RNA和蛋白质积聚在陷阱中,然后从发生基因表达的DNA区域中耗尽。当磁场关闭时,蛋白质合成速率的降低最终恢复到稳态。电场与分隔的无细胞基因表达反应的结合,创造了一种简单,无标记的方法来控制时空生物分子,从而为基于最小生物零件设计的生物电子界面的混合生物系统打开了可能性。
更新日期:2018-07-23
down
wechat
bug