当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New design on Li-ion battery anode of ternary complex metal/metal [email protected]: A case study of hierarchical NiCo-NiCo2O4@CNTs
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2018-07-21 , DOI: 10.1016/j.cej.2018.07.125
Chunyan Ding , Lijuan Wang , Weiwei Zhou , Dong Wang , Yu Du , Guangwu Wen

Urgent and heavy demand of high energy/power density lithium-ion batteries (LIBs) challenges the ultimate limit of commercial anodes. Herein, enlightened by the extra capacity on transition metal oxides (TMO) anodes derived from the transition metal (TM) catalytic effect on reversible solid-electrolyte interface (SEI) films, a ternary composite consisting of TM, TMO, and carbon matrix, namely TM/TMO/carbon, is proposed as a novel and high-efficiency anode prototype. In this electrode design, TMO not only serve as active material but also pulverizes the TM nanoparticles via the conversion reaction during cycling. Pulverized TM nanoparticles can activate and/or promote the reversible transformation of SEI films more efficiently. And carbon matrix ensures the electronic conductivity and integrity of the overall electrode during multiple electrochemical reactions. As a proof-of-concept demonstration, NiCo-NiCo2O4@carbon nanotubes ([email protected]) is synthesized by a bottom-up strategy via in-situ growth on a simplified chemical vapor deposition (CVD) process. As designed, the [email protected] keeps gaining extra capacity upon cycling, delivering an unceasingly increased capacity up to 1324 mAh g−1 (500 mA g−1), splendid rate performance (945 mAh g−1 at 1000 mA g−1, 696 mAh g−1 at 2000 mA g−1), and ultralong lifespan (2200 cycles). Detailed electrochemical investigation reveals a transformation of lithium storage mechanism from battery-type conversion reaction to pseudocapacitive electrochemical interfacial reaction arising from SEI films. It is believed that our work offers a novel and effective prototype for designing high energy/power density anodes for LIBs.



中文翻译:

三元复合金属/金属锂离子电池阳极的新设计[电子邮件保护]:分层NiCo- NiCo 2 O 4 @CNTs的案例研究

高能量/功率密度锂离子电池(LIB)的迫切和巨大需求挑战了商业阳极的最终极限。在此,由过渡金属(TM)的催化作用对可逆固体电解质界面(SEI)膜产生过渡金属氧化物(TMO)阳极的额外容量所启发,该三元复合物由TM,TMO和碳基体组成,即TM / TMO /碳被认为是一种新型的高效阳极原型。在这种电极设计中,TMO不仅充当活性材料,而且还在循环过程中通过转化反应将TM纳米颗粒粉碎。粉碎的TM纳米颗粒可以更有效地激活和/或促进SEI膜的可逆转变。碳基质可确保在多次电化学反应过程中整个电极的电子导电性和完整性。作为概念验证的演示,NiCo-NiCo2 O 4碳纳米管([受电子邮件保护])是通过自下而上的策略通过简化的化学气相沉积(CVD)工艺原位生长合成的。由于设计时,[电子邮件保护]保持在循环时获得额外的能力,提供一个不断增加的容量高达1324毫安时的g ^ -1(500毫安g ^ -1),出色的倍率性能(945毫安时g ^ -1以1000mA g ^ -1,696毫安克-1在2000毫安克-1)和超长寿命(2200个周期)。详细的电化学研究揭示了锂存储机制从电池型转化反应到SEI膜引起的伪电容电化学界面反应的转变。可以相信,我们的工作为设计用于LIB的高能量/功率密度阳极提供了新颖有效的原型。

更新日期:2018-07-21
down
wechat
bug