当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams
Carbon ( IF 10.9 ) Pub Date : 2018-11-01 , DOI: 10.1016/j.carbon.2018.07.021
Julian F.R.V. Silveira , Andre R. Muniz

Abstract Diamond nanothreads (DNTs) are one-dimensional, fully sp3-bonded carbon nanostructures resulting of covalent bonding between stacked benzene molecules in a crystal, induced by application of high pressure, as demonstrated in experiments. In this work, we used classical Molecular Dynamics simulations to propose the synthesis of analogous two- and three-dimensional porous nanostructures, which we named diamond nanomeshes (DNM) and diamond nanofoams (DNF), consistently to the definition of DNTs, and computed some of their structural and mechanical properties. Two different approaches toward creation of such materials are proposed. One of them consists in interconnecting finite domains of conventional DNTs, achieved through partial surface dehydrogenation and subsequent C-C covalent bonding. The other approach considers that the formation of sp3 C-C bonds between stacked benzene molecules under high pressure could be extended to polycyclic aromatic hydrocarbon (PAH) molecules, generating crosslinked DNT-like structures. Different atomic configurations can be achieved by varying the morphology of DNTs used in their construction, the PAH molecules, and the nature of the DNT covalent interconnections. The resulting materials exhibit an interesting combination of mechanical strength, flexibility, lightness, high porosity and high specific surface area, enabling potential applications in reinforced nanocomposites, gas storage/separation, sensors, among others.

中文翻译:

基于金刚石纳米线的 2D 和 3D 材料:金刚石纳米网和纳米泡沫

摘要 金刚石纳米线 (DNT) 是一维、完全 sp3 键合的碳纳米结构,由晶体中堆积的苯分子之间的共价键产生,由施加高压诱导,如实验所示。在这项工作中,我们使用经典的分子动力学模拟来提出类似的二维和三维多孔纳米结构的合成,我们将其命名为金刚石纳米网 (DNM) 和金刚石纳米泡沫 (DNF),与 DNT 的定义一致,并计算了一些它们的结构和机械性能。提出了两种不同的方法来创造这种材料。其中之一在于将常规 DNT 的有限域相互连接,通过部分表面脱氢和随后的 CC 共价键合实现。另一种方法认为,在高压下堆积的苯分子之间形成 sp3 CC 键可以扩展到多环芳烃 (PAH) 分子,产生交联的 DNT 样结构。不同的原子构型可以通过改变其结构中使用的 DNT 的形态、PAH 分子和 DNT 共价互连的性质来实现。所得材料表现出机械强度、柔韧性、轻便性、高孔隙率和高比表面积的有趣组合,可在增强纳米复合材料、气体储存/分离、传感器等方面实现潜在应用。不同的原子构型可以通过改变其结构中使用的 DNT 的形态、PAH 分子和 DNT 共价互连的性质来实现。所得材料表现出机械强度、柔韧性、轻便性、高孔隙率和高比表面积的有趣组合,可在增强纳米复合材料、气体储存/分离、传感器等方面实现潜在应用。不同的原子构型可以通过改变其结构中使用的 DNT 的形态、PAH 分子和 DNT 共价互连的性质来实现。所得材料表现出机械强度、柔韧性、轻便性、高孔隙率和高比表面积的有趣组合,可在增强纳米复合材料、气体储存/分离、传感器等方面实现潜在应用。
更新日期:2018-11-01
down
wechat
bug