当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Collective Structural Relaxation in Phase‐Change Memory Devices
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2018-07-16 , DOI: 10.1002/aelm.201700627
Manuel Le Gallo 1 , Daniel Krebs 1 , Federico Zipoli 1 , Martin Salinga 1, 2 , Abu Sebastian 1
Affiliation  

Phase‐change memory devices are expected to play a key role in future computing systems as both memory and computing elements. A key challenge in this respect is the temporal evolution of the resistance levels commonly referred to as “resistance drift.” In this paper, a comprehensive description of resistance drift as a result of spontaneous structural relaxation of the amorphous phase‐change material toward an energetically more favorable ideal glass state is presented. Molecular dynamics simulations provide insights into the microscopic origin of the structural relaxation. Based on those insights, a collective relaxation model is proposed to capture the kinetics of structural relaxation. By linking the physical material parameters governing electrical transport to such a description of structural relaxation, an integrated drift model that is able to predict the current–voltage characteristics at any instance in time even during nontrivial temperature treatments is obtained. Accurate quantitative matching with experimental drift measurements over a wide range of time (10 decades) and temperature (160–420 K) is demonstrated.

中文翻译:

相变存储器件中的集体结构弛豫

相变存储设备有望在未来的计算系统中扮演重要角色,既是存储又是计算元素。在这方面的主要挑战是电阻水平的时间演变,通常称为“电阻漂移”。在本文中,将对由于非晶相变材料自发地向弛豫状态转变为能量上更理想的理想玻璃态而引起的电阻漂移进行全面描述。分子动力学模拟提供了对结构弛豫的微观起源的见解。基于这些见解,提出了一种集体松弛模型来捕获结构松弛的动力学。通过将控制电传输的物理材料参数与结构松弛的描述联系起来,获得了一个集成的漂移模型,该模型即使在非平凡的温度处理过程中也可以随时预测电流-电压特性。演示了在很宽的时间范围内(10个十年)和温度范围(160–420 K)的实验漂移测量结果的精确定量匹配。
更新日期:2018-07-16
down
wechat
bug