当前位置: X-MOL 学术Optica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding
Optica ( IF 10.4 ) Pub Date : 2018-07-18 , DOI: 10.1364/optica.5.000876
Muhammad Rodlin Billah , Matthias Blaicher , Tobias Hoose , Philipp-Immanuel Dietrich , Pablo Marin-Palomo , Nicole Lindenmann , Aleksandar Nesic , Andreas Hofmann , Ute Troppenz , Martin Moehrle , Sebastian Randel , Wolfgang Freude , Christian Koos

Efficient coupling of III–V light sources to silicon photonic circuits is one of the key challenges of integrated optics. Important requirements are low coupling losses, as well as a small footprint and a high yield of the overall assembly, along with the ability to use automated processes for large-scale production. In this paper, we demonstrate that photonic wire bonding addresses these challenges by exploiting direct-write two-photon lithography for in situ fabrication of three-dimensional freeform waveguides between optical chips. In a series of proof-of-concept experiments, we connect indium phosphide (InP)-based horizontal-cavity surface-emitting lasers to passive silicon photonic circuits with insertion losses down to 0.4 dB. To the best of our knowledge, this is the most efficient interface between an InP light source and a silicon photonic chip that has so far been demonstrated. Our experiments represent a key step in advancing photonic wire bonding to a universal integration platform for hybrid photonic multi-chip assemblies that combine known-good dies of different materials to high-performance hybrid multi-chip modules.

中文翻译:

通过光子引线键合将硅光子电路和InP激光器混合集成

III-V光源与硅光子电路的有效耦合是集成光学的主要挑战之一。重要的要求是低耦合损耗,占地面积小和整体组装的高产量,以及能够使用自动化过程进行大规模生产的能力。在本文中,我们证明了光子引线键合通过利用直接写入双光子光刻技术原位解决了这些挑战光学芯片之间的三维自由形式波导的制造。在一系列概念验证实验中,我们将基于磷化铟(InP)的水平腔表面发射激光器与插入损耗低至0.4 dB的无源硅光子电路相连接。据我们所知,这是迄今为止已证明的InP光源和硅光子芯片之间最有效的接口。我们的实验代表了将光子引线键合推进到用于混合光子多芯片组件的通用集成平台的关键一步,该平台将已知的不同材料的裸片结合到高性能混合多芯片模块中。
更新日期:2018-07-21
down
wechat
bug