当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlling Interactions of Cyclic Oligosaccharides with Hetero‐Oligomeric Nanopores: Kinetics of Binding and Release at the Single‐Molecule Level
Small ( IF 13.3 ) Pub Date : 2018-07-15 , DOI: 10.1002/smll.201801192
Remya Satheesan 1 , Smrithi Krishnan R. 1 , Kozhinjampara R. Mahendran 1
Affiliation  

Controlling the molecular interactions through protein nanopores is crucial for effectively detecting single molecules. Here, the development of a hetero‐oligomeric nanopore derived from Nocardia farcinica porin AB (NfpAB) is discussed for single‐molecule sensing of biopolymers. Using single‐channel recording, the interaction of cyclic oligosaccharides such as cationic cyclodextrins (CDs) of different symmetries and charges with NfpAB is measured. Studies of the transport kinetics of CDs reveal asymmetric geometry and charge distribution of NfpAB. The applied potential promotes the attachment of the cationic CDs to the negatively charged pore surface due to electrostatic interaction. Further, the attached CDs are released from the pore by reversing the applied potential in time‐resolved blockages. Release of CDs from the pore depends on its charge, size, and magnitude of the applied potential. The kinetics of CD attachment and release is controlled by fine‐tuning the applied potential demonstrating the successful molecular transport across these nanopores. It is suggested that such controlled molecular interactions with protein nanopores using organic templates can be useful for several applications in nanopore technology and single‐molecule chemistry.

中文翻译:

控制环状寡糖与异寡聚纳米孔的相互作用:在单分子水平上的结合和释放动力学。

通过蛋白质纳米孔控制分子相互作用对于有效检测单个分子至关重要。在这里,开发了一种来自诺卡氏菌多孔蛋白AB的异寡聚纳米(NfpAB)被讨论用于生物聚合物的单分子传感。使用单通道记录,可以测量环状寡糖(例如不同对称性的阳离子环糊精(CDs)和电荷)与NfpAB的相互作用。CD的运输动力学研究表明NfpAB的几何形状和电荷分布不对称。由于静电相互作用,施加的电势促进阳离子CD附着到带负电荷的孔表面。此外,通过逆转时间分辨的阻塞中施加的电势,附着的CD从孔隙中释放出来。CD从孔中释放取决于其电荷,大小和施加电位的大小。CD附着和释放的动力学是通过微调所施加的电势来控制的,该电势表明了分子在这些纳米孔中的成功迁移。
更新日期:2018-07-15
down
wechat
bug