当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2018-07-13 , DOI: 10.1002/adfm.201802003
Minguk Jo 1 , Hyeon Jun Lee 2 , Chadol Oh 1 , Hyojin Yoon 1 , Ji Young Jo 2 , Junwoo Son 1
Affiliation  

The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling.

中文翻译:

固态质子电解质对VO2通道的栅极诱导的大规模和可逆相变

使用栅极偏置来控制VO 2(一种典型的相关氧化物)中的电子相,提供了一种强大的方法来探究其基本物理原理,并具有开发新型电子器件的潜力。迄今为止,由于感应载流子密度不足和静电屏蔽长度短,在具有相关通道的三端子设备中进行纯静电门控显示出有限的静电门控效率。在此,通过固态质子(H +)导体在低压下施加栅极偏置V G,在VO 2通道中显示出大量且可逆的电导调制。通过使用多孔二氧化硅调节VO 2中的H +浓度,低电压下栅极感应的可逆绝缘体到金属(I到M)相变,以及前所未有的两步绝缘体到金属到绝缘子(I到M到I)相变显示了高电压下的电压。V G在不产生氧气不足的情况下,将H +强烈有效地注入VO 2通道。这种H +诱导的电子相变是由H +诱导的化学膨胀导致的面外晶格参数的巨大调制(≈7%)发生的。结果阐明了H +在相关相的电子状态中的作用,并证明了使用离子/电子耦合的电子设备的潜力。
更新日期:2018-07-13
down
wechat
bug