当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large magnetoelectric effects mediated by electric-field-driven nanoscale phase transformations in sputtered (nanoparticulate) and electrochemically dealloyed (nanoporous) Fe–Cu films†
Nanoscale ( IF 6.7 ) Pub Date : 2018-07-13 00:00:00 , DOI: 10.1039/c8nr03924k
Shauna Robbennolt 1 , Alberto Quintana 1 , Eva Pellicer 1 , Jordi Sort 2
Affiliation  

Large magnetoelectric effects are observed in as-sputtered (nanoparticulate-like) and electrochemically dealloyed (nanoporous) 200 nm thick Fe–Cu films. Application of positive voltages decreases both the saturation magnetization (MS) and coercivity (HC) of the films, while negative voltages cause the reverse effect (increase of MS and HC). The relative variations are as high as 20% for MS and beyond 100% for HC, both for the as-sputtered and dealloyed states. These changes in magnetic properties are caused by controlled and reversible electric-field-driven nanoscale phase transformations between face-centered cubic (fcc) and body-centered cubic (bcc) structures. These phase transitions are in turn due to selective redox reactions induced by the applied voltage, which can be regarded as a “magnetoionic effect.” The controlled tuning of HC and MS with the moderate values of applied voltage, together with the sustainable composition of the investigated alloys (not containing noble metals, as opposed to many previous works on magnetoelectric effects in thin films), pave the way towards the implementation of magnetic and spintronic devices with enhanced energy efficiency and functionalities.

中文翻译:

溅射(纳米颗粒)和电化学脱合金(纳米多孔)Fe-Cu 薄膜中电场驱动的纳米级相变介导的大磁电效应†

在溅射(纳米颗粒状)和电化学脱合金(纳米多孔)200 nm 厚的 Fe-Cu 薄膜中观察到大磁电效应。施加正电压会降低薄膜的饱和磁化强度(M S)和矫顽力(H C ),而负电压会产生相反的效果( M SH C增加)。对于溅射状态和脱合金状态,MS的相对变化高达 20% , H C的相对变化超过 100% 。这些磁性变化是由面心立方 ( fcc ) 和体心立方 ( bcc ) 结构之间受控且可逆的电场驱动的纳米级相变引起的。这些相变又是由于施加电压引起的选择性氧化还原反应,这可以被视为“磁离子效应”。通过施加适中的电压值来控制 H C 和 M S 的调节,以及所研究合金的可持续成分(不包含贵金属,这与之前许多关于薄膜磁电效应的研究相反),为实现这一目标铺平道路实现具有增强能源效率和功能的磁性和自旋电子器件。
更新日期:2018-07-13
down
wechat
bug