当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nickel-manganese structured and multiphase composites as electrodes for hybrid supercapacitors
Electrochimica Acta ( IF 6.6 ) Pub Date : 2018-07-10 , DOI: 10.1016/j.electacta.2018.06.191
L. Soserov , A. Stoyanova , T. Boyadzhieva , V. Koleva , M. Kalapsazova , R. Stoyanova

Hybrid supercapacitors with the composite electrode materials display high energy density at the expense of the reduced cycle stability. Herein, we provide new data on the electrochemical performance of hybrid electrodes based on mixed nickel hydroxides/manganese oxides in the form of structured and multiphase composites. As structured composites, two types of less known structure modifications are examined: interstratified modification of Ni(OH)2 (i.e. α/βIS-Ni(OH)2) and ε-modification of MnO2. The multiphase hydroxide/oxide composites are prepared by the conventional grinding of α/βIS-Ni(OH)2 and ε-MnO2 and by the in-situ formation after the reaction of layered Na0.5Ni0.5Mn0.5O2 with mixed LiOH-KOH electrolyte. The structure, morphology and porous texture properties of composites are analyzed by means of powder X-ray diffraction, scanning electron microscopy (SEM) and low-temperature nitrogen adsorption, respectively. The electrochemical performance of composites electrodes is determined by galvanostatic experiments in concentrated individual KOH and mixed LiOH-KOH electrolytes. The ex-situ X-ray diffraction is used to monitor the changes in composite electrodes during electrochemical cell function. It has been found that α/βIS-Ni(OH)2 participates in electrochemical reaction concomitantly with H2O and Li+ intercalation, while the electrochemical performance of ε-MnO2 is determined by surface adsorption of electrolyte alkaline ions. The best electrochemical performance (in terms of discharge capacity, rate capability and cycling stability) is achieved for α/βIS-Ni(OH)2 especially when it works in mixed LiOH-KOH electrolyte. In alkaline electrolyte solution, layered Na0.5Ni0.5Mn0.5O2 is transformed into a phase mixture between slightly sodium deficient oxide Na0.5-xNi0.5Mn0.5O2 and α-type nickel hydroxide. Thus generated multiphase composite demonstrates the highest areal capacitance and a rate capability comparable with that for α/βIS-Ni(OH)2.



中文翻译:

镍锰结构和多相复合材料作为混合超级电容器的电极

具有复合电极材料的混合超级电容器显示出高能量密度,但以降低的循环稳定性为代价。在这里,我们提供了基于混合的氢氧化镍/锰氧化物的结构化和多相复合材料形式的混合电极的电化学性能的新数据。结构化复合材料,两种类型的少已知结构的修改都检查:间层修饰的Ni(OH)2(即α/β IS -Ni(OH)2)和MnO的ε-修改2。多相氢氧化物/氧化物复合材料通过α/β的常规研磨制备IS -Ni(OH)2和ε-的MnO 2和由原位层状Na 0.5 Ni 0.5 Mn 0.5 O 2与混合的LiOH-KOH电解质反应后形成。分别通过粉末X射线衍射,扫描电子显微镜(SEM)和低温氮吸附对复合材料的结构,形貌和多孔织构特性进行了分析。复合电极的电化学性能是通过恒电流实验在浓缩的单个KOH和LiOH-KOH混合电解质中确定的。所述非原位X射线衍射被用于监测电化学电池功能期间在复合电极的变化。已经发现的是α/β IS -Ni(OH)2ε- MnO 2的电化学性能由电解质碱性离子的表面吸附决定,并伴随H 2 O和Li +的插入而参与电化学反应。最好电化学性能(放电容量,倍率性能和循环稳定性方面)可以实现α/β IS -Ni(OH)2特别是当它工作在混合的LiOH-KOH电解质。在碱性电解液中,层状的Na 0.5 Ni 0.5 Mn 0.5 O 2转化为轻度钠缺乏氧化物Na 0.5-x Ni 0.5之间的相混合物Mn 0.5 O 2和α型氢氧化镍。这样生成多相复合演示最高面积电容和速率能力与为α/β可比IS -Ni(OH)2

更新日期:2018-07-10
down
wechat
bug