当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiphase flow studies for microscale hydrodynamics in the structured packed column
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2018-07-11 , DOI: 10.1016/j.cej.2018.07.067
Rajesh K. Singh , Janine E. Galvin , Xin Sun

Post combustion carbon capture by solvent absorption in a structured packed column is a promising technology for mitigating greenhouse gas emissions. Computational fluid dynamic (CFD) modelling of such a column is a challenging multiscale problem due to the range in length and time scales. The microscale hydrodynamics play a key role in the overall column efficiency with the interfacial area significantly influencing the mass transfer between the gas and liquid phases. In this context, multiphase flow simulations using the volume of fluid (VOF) method in a representative elementary unit (REU) of the packed column can provide fundamental insights into the microscale hydrodynamics, such as, interfacial area and liquid holdup. The present study systematically examines the impact of various factors (e.g., physical properties and contact angle) on the interfacial area. The results are compared with existing correlations and a scaling analysis is also performed. The solvent physical properties are characterized by the Kapitza number (Ka), a dimensionless number that depends only on fluid properties. So that the Ka number decreases with increasing viscosity. At a fixed liquid load, the interfacial area and liquid holdup are observed to increase with decreasing Ka number. The impact of contact angle (i.e., solid surface characteristics) is effectively investigated by modifying the wall boundary conditions. The interfacial area and liquid holdup are found to decrease with increasing contact angle. Subsequently, a phenomenological correlation for interfacial area is proposed that includes the impact of these parameters. This correlation may be used to predict the interfacial area for gas-liquid flow in a structured packing for rivulet to fully wetted flow regimes.



中文翻译:

多相流研究结构填料塔中的微尺度流体动力学

通过在结构化填充塔中吸收溶剂来吸收燃烧后碳是减少温室气体排放的有前途的技术。由于长度和时间范围的变化,这种色谱柱的计算流体动力学(CFD)建模是一个具有挑战性的多尺度问题。微观流体动力学在整个色谱柱效率中起着关键作用,界面面积会显着影响气相和液相之间的传质。在这种情况下,在填充塔的代表性基本单元(REU)中使用流体体积(VOF)方法进行的多相流模拟可以为微观尺度的流体动力学(如界面面积和液体滞留率)提供基本的见识。本研究系统地考察了各种因素(例如,物理性质和接触角)。将结果与现有的相关性进行比较,并执行缩放分析。溶剂的物理性质用Kapitza数(Ka)来表征,Kapitza数是仅取决于流体性质的无量纲数。因此,Ka值随着粘度的增加而降低。在固定的液体负荷下,观察到界面面积和液体滞留量随Ka数的减少而增加。通过修改壁边界条件,可以有效地研究接触角(即,固体表面特性)的影响。发现界面面积和液体滞留量随着接触角的增加而减小。随后,提出了界面区域的现象学相关性,其中包括这些参数的影响。

更新日期:2018-07-11
down
wechat
bug