当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal conductivity enhancement of reduced Graphene oxide via chemical defect healing for efficient heat dissipation
Carbon ( IF 10.9 ) Pub Date : 2018-11-01 , DOI: 10.1016/j.carbon.2018.07.008
Chae Bin Kim , Janggeon Lee , Jaehyun Cho , Munju Goh

Abstract As next-generation miniaturized electronics are being developed with higher power density, a need for effectively dissipating the generated heat during the device operation is becoming ever greater. Nano carbons such as graphene are strong candidates for heat dissipating materials with lightweights owing to their low densities with extraordinary thermal properties rooted from their highly crystalline and conjugated structures. Starting from a relatively less ordered, cheaper, and mass producible graphene oxide (GO), to this end, we herein describe a sequential chemical transformation to obtain a higher ordered crystalline and conjugated structure of the GO. A conventional reduction followed by a chemical defect healing process via intramolecular cross-dehydrogenative coupling gradually increased graphitic and crystalline structures of the GO as evidenced by a variety of spectroscopic and microscopic experiments. Consequently, the thermal conductivity of the final product was enhanced to 9.90 W/mK, corresponding to over 500% of the starting GO (1.92 W/mK). Moreover, the defect healed GO itself was successfully used as a heat dissipating material, quickly lowering its temperature by ∼36 °C during a continuous heating at 100 °C. Finally, we also demonstrated the defect healed GO as filler to enhance the thermal conductivity of the polymeric composites.

中文翻译:

通过化学缺陷修复增强还原氧化石墨烯的热导率以实现高效散热

摘要 随着具有更高功率密度的下一代小型化电子产品的开发,对有效散发设备运行期间产生的热量的需求变得越来越大。纳米碳(例如石墨烯)是轻质散热材料的有力候选者,因为它们的密度低,并且具有源于其高度结晶和共轭结构的非凡热性能。从相对不那么有序、更便宜和可大规模生产的氧化石墨烯 (GO) 开始,为此,我们在此描述了顺序化学转化以获得更高有序的 GO 晶体和共轭结构。各种光谱和显微实验证明,常规还原之后通过分子内交叉脱氢偶联进行化学缺陷修复过程逐渐增加了 GO 的石墨和晶体结构。因此,最终产品的热导率提高到 9.90 W/mK,相当于起始 GO (1.92 W/mK) 的 500% 以上。此外,缺陷修复的 GO 本身已成功用作散热材料,在 100°C 的连续加热过程中,其温度迅速降低了约 36°C。最后,我们还展示了缺陷愈合的 GO 作为填料以提高聚合物复合材料的导热性。90 W/mK,相当于起始 GO (1.92 W/mK) 的 500% 以上。此外,缺陷修复的 GO 本身已成功用作散热材料,在 100°C 的连续加热过程中,其温度迅速降低了约 36°C。最后,我们还展示了缺陷愈合的 GO 作为填料以提高聚合物复合材料的导热性。90 W/mK,相当于起始 GO (1.92 W/mK) 的 500% 以上。此外,缺陷修复的 GO 本身已成功用作散热材料,在 100°C 的连续加热过程中,其温度迅速降低了约 36°C。最后,我们还展示了缺陷愈合的 GO 作为填料以提高聚合物复合材料的导热性。
更新日期:2018-11-01
down
wechat
bug