当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A crossbar network for silicon quantum dot qubits.
Science Advances ( IF 13.6 ) Pub Date : 2018-Jul-01 , DOI: 10.1126/sciadv.aar3960
Ruoyu Li 1, 2 , Luca Petit 1, 2 , David P. Franke 1, 2 , Juan Pablo Dehollain 1, 2 , Jonas Helsen 1 , Mark Steudtner 1, 3 , Nicole K. Thomas 4 , Zachary R. Yoscovits 4 , Kanwal J. Singh 4 , Stephanie Wehner 1 , Lieven M. K. Vandersypen 1, 2, 4 , James S. Clarke 4 , Menno Veldhorst 1, 2
Affiliation  

The spin states of single electrons in gate-defined quantum dots satisfy crucial requirements for a practical quantum computer. These include extremely long coherence times, high-fidelity quantum operation, and the ability to shuttle electrons as a mechanism for on-chip flying qubits. To increase the number of qubits to the thousands or millions of qubits needed for practical quantum information, we present an architecture based on shared control and a scalable number of lines. Crucially, the control lines define the qubit grid, such that no local components are required. Our design enables qubit coupling beyond nearest neighbors, providing prospects for nonplanar quantum error correction protocols. Fabrication is based on a three-layer design to define qubit and tunnel barrier gates. We show that a double stripline on top of the structure can drive high-fidelity single-qubit rotations. Self-aligned inhomogeneous magnetic fields induced by direct currents through superconducting gates enable qubit addressability and readout. Qubit coupling is based on the exchange interaction, and we show that parallel two-qubit gates can be performed at the detuning-noise insensitive point. While the architecture requires a high level of uniformity in the materials and critical dimensions to enable shared control, it stands out for its simplicity and provides prospects for large-scale quantum computation in the near future.

中文翻译:

硅量子点量子位的交叉网络。

门定义的量子点中单电子的自旋态满足了实用量子计算机的关键要求。这些包括极长的相干时间,高保真量子操作以及将电子作为片上飞行量子位的机制传递的能力。为了将量子位的数量增加到实际量子信息所需的数千或数百万个量子位,我们提出了一种基于共享控制和可扩展数量的线路的体系结构。至关重要的是,控制线定义了量子位网格,因此不需要本地组件。我们的设计使qubit耦合能够超越最近的邻居,从而为非平面量子纠错协议提供了前景。制造基于三层设计来定义量子位和隧道势垒门。我们表明,结构顶部的双带状线可以驱动高保真单量子位旋转。直流电通过超导栅极感应出的自对准不均匀磁场可实现量子位寻址和读出。量子位耦合基于交换交互作用,我们证明了可以在失谐噪声不敏感点执行并行的两个量子位门控。虽然该架构要求在材料和关键尺寸上具有高度的统一性以实现共享控制,但它以其简单性而出众,并在不久的将来为大规模量子计算提供了前景。量子位耦合基于交换交互作用,我们证明了可以在失谐噪声不敏感点执行并行的两个量子位门控。虽然该架构要求在材料和关键尺寸上具有高度的统一性以实现共享控制,但它以其简单性而出众,并在不久的将来为大规模量子计算提供了前景。量子位耦合基于交换交互作用,我们证明了可以在失谐噪声不敏感点执行并行的两个量子位门控。虽然该架构要求在材料和关键尺寸上具有高度的统一性以实现共享控制,但它以其简单性而出众,并在不久的将来为大规模量子计算提供了前景。
更新日期:2018-07-08
down
wechat
bug