当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biological uptake and reversible scavenging of zinc in the global ocean
Science ( IF 56.9 ) Pub Date : 2018-07-05 , DOI: 10.1126/science.aap8532
Thomas Weber 1 , Seth John 2 , Alessandro Tagliabue 3 , Tim DeVries 4
Affiliation  

Controlling zinc in the oceans Zinc, a key micronutrient for marine phytoplankton, has a global distribution remarkably similar to that of silicic acid, even though Zn and Si have very different biogeochemical cycles. Weber et al. investigated why this is so by combining model calculations and observations. They found that biological uptake in the Southern Ocean and reversible scavenging of Zn onto sinking particles both affect the distribution of Zn in the ocean. Thus, Zn and Si distributions will be affected differently by future changes in ocean temperature, pH, and carbon fluxes. Science, this issue p. 72 The distribution of zinc in the world oceans depends on circulation, organic matter cycling, and reversible scavenging. Zinc (Zn) is a key micronutrient for marine phytoplankton, with a global distribution that is similar to silicic acid. The processes that govern this relationship, despite the very different biological cycling of Zn and silica, remain poorly understood. Here, we use diagnostic and mechanistic models to show that only a combination of Southern Ocean biological uptake and reversible scavenging of Zn onto sinking particles can explain the observations. The distinction between organic and adsorbed Zn can also reconcile the vertical distribution and mass balance of Zn isotopes, which previously appeared at odds. This holistic understanding explains the Zn deficiencies observed throughout the low-latitude ocean and implies a greater sensitivity of the marine Zn cycle to climate-driven changes in organic matter cycling than previously recognized.

中文翻译:

全球海洋中锌的生物吸收和可逆清除

控制海洋中的锌 锌是海洋浮游植物的关键微量营养素,其全球分布与硅酸非常相似,尽管 Zn 和 Si 具有非常不同的生物地球化学循环。韦伯等人。通过结合模型计算和观察研究了为什么会这样。他们发现南大洋的生物吸收和锌在下沉颗粒上的可逆清除都会影响锌在海洋中的分布。因此,未来海洋温度、pH 值和碳通量的变化将对 Zn 和 Si 的分布产生不同的影响。科学,这个问题 p。72 锌在世界海洋中的分布取决于循环、有机物质循环和可逆清除。锌 (Zn) 是海洋浮游植物的关键微量营养素,其全球分布与硅酸相似。尽管锌和二氧化硅的生物循环非常不同,但支配这种关系的过程仍然知之甚少。在这里,我们使用诊断和机械模型来表明,只有南大洋生物吸收和锌在下沉颗粒上的可逆清除相结合才能解释观察结果。有机和吸附 Zn 之间的区别还可以调和 Zn 同位素的垂直分布和质量平衡,这在以前出现过不一致。这种整体理解解释了在整个低纬度海洋中观察到的锌缺乏,并意味着海洋锌循环对气候驱动的有机物质循环变化的敏感性比以前认识到的更高。仍然知之甚少。在这里,我们使用诊断和机械模型来表明只有南大洋生物吸收和 Zn 可逆清除到下沉颗粒上的组合才能解释观察结果。有机和吸附 Zn 之间的区别还可以调和 Zn 同位素的垂直分布和质量平衡,这在以前出现过不一致。这种整体理解解释了在整个低纬度海洋中观察到的锌缺乏,并意味着海洋锌循环对气候驱动的有机物质循环变化的敏感性比以前认识到的更高。仍然知之甚少。在这里,我们使用诊断和机械模型来表明,只有南大洋生物吸收和锌在下沉颗粒上的可逆清除相结合才能解释观察结果。有机和吸附 Zn 之间的区别还可以调和 Zn 同位素的垂直分布和质量平衡,这在以前出现过不一致。这种整体理解解释了在整个低纬度海洋中观察到的锌缺乏,并意味着海洋锌循环对气候驱动的有机物质循环变化的敏感性比以前认识到的更高。有机和吸附 Zn 之间的区别还可以调和 Zn 同位素的垂直分布和质量平衡,这在以前出现过不一致。这种整体理解解释了在整个低纬度海洋中观察到的锌缺乏,并意味着海洋锌循环对气候驱动的有机物质循环变化的敏感性比以前认识到的更高。有机和吸附 Zn 之间的区别还可以调和 Zn 同位素的垂直分布和质量平衡,这在以前出现过不一致。这种整体理解解释了在整个低纬度海洋中观察到的锌缺乏,并意味着海洋锌循环对气候驱动的有机物质循环变化的敏感性比以前认识到的更高。
更新日期:2018-07-05
down
wechat
bug