当前位置: X-MOL 学术Sens. Actuators B Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D inverse opal nanostructured multilayer films of two-component heterostructure composites: A new-generation synthetic route and potential application as high-performance acetone detector
Sensors and Actuators B: Chemical ( IF 8.4 ) Pub Date : 2018-07-05 , DOI: 10.1016/j.snb.2018.07.020
Tianshuang Wang , Sufang Zhang , Qi Yu , Xueying Kou , Peng Sun , Fangmeng Liu , Huiying Lu , Xu Yan , Geyu Lu

The preparation of highly ordered porous semiconducting metal oxides (SMOs) films is a hot issue in the field of chemical sensor. Herein, we successfully fabricated 3D inverse opal (IO) ZnO-In2O3 composites multilayer films (MFs) via a novel strategy that combing ultrasonic nebulization deposition technique with polystyrene (PS) spheres template. Such one-step synthetic method is advantageous to achieve the construction of large-scale interconnected macro-porous (pore size: ∼170 nm) structure in composites materials, which is beneficial for facilitating gas molecule transport into the sensing layers and accelerating the surface reactions process. More significantly, by using this method, the large-scale 3D IO MFs made in this work can be easily transferred onto any target substrates without being destroyed. Due to the IO multilayer films structure and abundant heterointerfaces, the 3D IO ZnO-In2O3 MFs-based gas sensor exhibited higher response toward acetone at lower operating temperature, better selectivity and long-term stability, faster recovery speed and lower detection limit. Consequently, the approach described herein is more suitable for the synthesis of porous composites materials films, in order to fabricate high performance chemical sensor.



中文翻译:

两组分异质结构复合材料的3D反蛋白石纳米结构多层膜:新一代合成途径及其作为高性能丙酮检测器的潜在应用

高度有序的多孔半导体金属氧化物(SMOs)膜的制备是化学传感器领域的一个热门问题。在这里,我们成功地制作了3D反蛋白石(IO)ZnO-In 2 O 3通过将超声雾化沉积技术与聚苯乙烯(PS)球模板相结合的新策略,可以将多层薄膜(MFs)合成。这种一步合成方法有利于在复合材料中实现大规模互连的大孔结构(孔径:〜170 nm),有利于促进气体分子向传感层的传输和加速表面反应。过程。更重要的是,通过使用这种方法,可以轻松地将在这项工作中制作的大规模3D IO MF转移到任何目标基板上,而不会被破坏。由于IO多层膜结构和丰富的异质界面,因此3D IO ZnO-In 2 O 3基于MFs的气体传感器在较低的工作温度下对丙酮显示出更高的响应速度,更好的选择性和长期稳定性,更快的回收速度和更低的检测限。因此,本文所述的方法更适合于多孔复合材料膜的合成,以制造高性能的化学传感器。

更新日期:2018-07-05
down
wechat
bug