当前位置: X-MOL 学术Anal. Bioanal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sheathless coupling of microchip electrophoresis to ESI-MS utilising an integrated photo polymerised membrane for electric contacting
Analytical and Bioanalytical Chemistry ( IF 4.3 ) Pub Date : 2018-07-04 , DOI: 10.1007/s00216-018-1226-0
T. Scholl , C. Dietze , M. Schmidt , S. Ohla , D. Belder

In this article, we present a novel approach for the sheathless coupling of microchip electrophoresis (MCE) with electrospray mass spectrometry (ESI-MS). The key element is an ion-conductive hydrogel membrane, placed between the separation channel and an adjacent microfluidic supporting channel, contacted via platinum electrodes. This solves the persistent challenge in hyphenation of mass spectrometry to chip electrophoresis, to ensure a reliable electrical connection at the end of the electrophoresis channel without sacrificing separation performance and sensitivity. Stable electric contacting is achieved via a Y-shaped supporting channel structure, separated from the main channel by a photo polymerised, ion permeable hydrogel membrane. Thus, the potential gradient required for performing electrophoretic separations can be generated while simultaneously preventing gas formation due to electrolysis. In contrast to conventional make-up or sheathflow approaches, sample dilution is also avoided. Rapid prototyping allowed the study of different chip-based approaches, i.e. sheathless, open sheathflow and electrode support channel designs, for coupling MCE to ESI-MS. The performance was evaluated with fluorescence microscopy and mass spectrometric detection. The obtained results revealed that the detection sensitivity obtained in such Y-channel chips with integrated hydrogel membranes was superior because sample dilution or loss was prevented. Furthermore, band broadening is reduced compared to similar open structures without a membrane.



中文翻译:

微芯片电泳与ESI-MS的无鞘耦合,利用集成的光聚合膜进行电接触

在本文中,我们提出了一种新的方法,用于微芯片电泳(MCE)与电喷雾质谱(ESI-MS)的无鞘耦合。关键元件是离子导电水凝胶膜,该膜位于分离通道和相邻的微流体支撑通道之间,并通过铂电极接触。这解决了在质谱联用技术与芯片电泳之间的持续挑战,以确保电泳通道末端的可靠电连接,而不会牺牲分离性能和灵敏度。通过Y形支撑通道结构实现稳定的电接触,该支撑结构通过光聚合的离子可渗透的水凝胶膜与主通道分开。因此,可以产生进行电泳分离所需的电势梯度,同时防止由于电解而形成气体。与传统的补充方法或鞘流方法相比,还避免了样品稀释。快速原型制作允许研究不同的基于芯片的方法,即无鞘,开放鞘流和电极支撑通道设计,以将MCE耦合到ESI-MS。用荧光显微镜和质谱检测评价性能。获得的结果表明,在这种具有集成水凝胶膜的Y通道芯片中获得的检测灵敏度更高,因为可以防止样品稀释或丢失。此外,与没有膜的类似开放结构相比,能谱带展宽减少了。与传统的补充方法或鞘流方法相比,还避免了样品稀释。快速原型制作允许研究不同的基于芯片的方法,即无鞘,开放鞘流和电极支撑通道设计,以将MCE耦合到ESI-MS。用荧光显微镜和质谱检测评价性能。获得的结果表明,在这种具有集成水凝胶膜的Y通道芯片中获得的检测灵敏度更高,因为可以防止样品稀释或丢失。此外,与没有膜的类似开放结构相比,能谱带展宽减少了。与传统的补充方法或鞘流方法相比,还避免了样品稀释。快速原型制作允许研究不同的基于芯片的方法,即无鞘,开放鞘流和电极支撑通道设计,以将MCE耦合到ESI-MS。用荧光显微镜和质谱检测评价性能。获得的结果表明,在这种具有集成水凝胶膜的Y通道芯片中获得的检测灵敏度更高,因为可以防止样品稀释或丢失。此外,与没有膜的类似开放结构相比,能谱带展宽减少了。开放式鞘流和电极支撑通道设计,用于将MCE耦合到ESI-MS。用荧光显微镜和质谱检测评价性能。获得的结果表明,在这种具有集成水凝胶膜的Y通道芯片中获得的检测灵敏度更高,因为可以防止样品稀释或丢失。此外,与没有膜的类似开放结构相比,能谱带展宽减少了。开放式鞘流和电极支撑通道设计,用于将MCE耦合到ESI-MS。用荧光显微镜和质谱检测评价性能。获得的结果表明,在这种具有集成水凝胶膜的Y通道芯片中获得的检测灵敏度更高,因为可以防止样品稀释或丢失。此外,与没有膜的类似开放结构相比,能谱带展宽减少了。

更新日期:2018-07-04
down
wechat
bug