当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Triclinic Off-Stoichiometric Na3.12Mn2.44(P2O7)2/C Cathode Materials for High-Energy/Power Sodium-Ion Batteries
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2018-07-04 00:00:00 , DOI: 10.1021/acsami.8b07577
Huangxu Li 1 , Zhian Zhang 1 , Ming Xu 1, 2 , Weizhai Bao 3 , Yanqing Lai 1 , Kai Zhang 1 , Jie Li 1
Affiliation  

The application of sodium-ion batteries (SIBs) requires a suitable cathode material with low cost, nontoxic, high safety, and high energy density, which is still a big challenge; thus, a basic research on exploring new types of materials is imperative. In this work, a manganic pyrophosphate and carbon compound Na3.12Mn2.44(P2O7)2/C has been synthesized through a feasible sol–gel method. Rietveld refinement reveals that Na3.12Mn2.44(P2O7)2 adopts a triclinic structure (P1̅ space group), which possesses spacious ion diffusion channels for facile sodium migration. The off-stoichiometric phase is able to offer more reversible Na+, delivering an enhanced reversible capacity of 114 mA h g–1 at 0.1 C, and because of the strong “inductive effect” that (P2O7)4– groups imposing on the Mn3+/Mn2+ redox couple, Na3.12Mn2.44(P2O7)2/C presents high platforms above 3.6 V, contributing a remarkable energy density of 376 W h kg–1, which is among the highest Fe-/Mn-based polyanion-type cathode materials. Furthermore, the off-stoichiometric compound also presents satisfactory rate capability and long-cycle stability, with a capacity retention of 75% after 500 cycles at 5 C. Ex situ X-ray diffraction demonstrates a single-phase reaction mechanism, and the density functional theory calculations display two one-dimensional sodium migration paths with low energy barriers in Na3.12Mn2.44(P2O7)2, which is vital for the facile sodium storage. We believe that this compound will be a competitive cathode material for large-scale SIBs.

中文翻译:

用于高能/功率钠离子电池的三斜非化学计量Na 3.12 Mn 2.44(P 2 O 72 / C阴极材料

钠离子电池(SIB)的应用需要低成本,无毒,高安全性和高能量密度的合适阴极材料,这仍然是一个很大的挑战。因此,探索新型材料的基础研究势在必行。在这项工作中,通过可行的溶胶-凝胶法合成了焦磷酸锰和碳化合物Na 3.12 Mn 2.44(P 2 O 72 / C。Rietveld精炼显示Na 3.12 Mn 2.44(P 2 O 72采用三斜晶结构(P1̅空间群),具有宽敞的离子扩散通道,可轻松进行钠迁移。非化学计量比相能够提供更多的可逆Na +,在0.1 C时可提供114 mA hg –1的增强可逆容量,并且由于(P 2 O 74–基团强加于其上的“感应效应” Mn 3+ / Mn 2+氧化还原对,Na 3.12 Mn 2.44(P 2 O 72 / C表现出高于3.6 V的高平台,贡献了376 W h kg –1的显着能量密度,这是最高的基于Fe- / Mn的聚阴离子型阴极材料。此外,非化学计量化合物还具有令人满意的速率能力和长周期稳定性,在5 C下500次循环后的容量保持率为75%。异位X射线衍射显示出单相反应机理,并且密度函数理论计算显示出在Na 3.12 Mn 2.44(P 2 O 72中具有低能垒的两个一维钠迁移路径,这对于方便的钠存储至关重要。我们相信,该化合物将成为大规模SIB的竞争性阴极材料。
更新日期:2018-07-04
down
wechat
bug