当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-nanoparticle tracking reveals mechanisms of membrane fouling
Journal of Membrane Science ( IF 9.5 ) Pub Date : 2018-10-01 , DOI: 10.1016/j.memsci.2018.06.044
Yu Cai , Daniel K. Schwartz

Abstract While membrane fouling has been studied for decades, it remains challenging to obtain direct information about the dominant mechanism of fouling in a specific scenario. Here, we employed a high-throughput particle-tracking approach, which enabled the visualization of particle transport in actual microfiltration membranes under flow conditions and provided direct evidence for distinct fouling mechanisms under different operating conditions. Our results suggest that the “stickiness” of particles can qualitatively change the dominant fouling mechanism. In particular, the evolutions of effective flux, particle velocity and pathway tortuosity were found to be systematically different under “sticking” vs “reduced-sticking” conditions in two different microfiltration membranes, composed of PVDF and PTFE, respectively. Under “sticking” conditions, fouling was rapid, and individual pathways were observed to disappear with the reduction of flux. However, the average particle velocity and the tortuosity of particle trajectories were unchanged throughout the fouling process, consistent with the complete blocking of random pathways. Conversely, under “reduced-sticking” conditions, the average particle velocity decreased and the tortuosity of particle pathways increased systematically with fouling, consistent with the gradual narrowing of pathways causing increased resistance. The comprehensive information about particle dynamics in membranes achieved with this approach will assist design and optimization of reduced-fouling separation processes as well as advance the understanding of complex mass transport.

中文翻译:

单纳米粒子追踪揭示了膜污染的机制

摘要 虽然膜污染已经研究了几十年,但在特定情况下获得有关污染主要机制的直接信息仍然具有挑战性。在这里,我们采用了一种高通量粒子追踪方法,该方法能够在流动条件下对实际微滤膜中的粒子传输进行可视化,并为不同操作条件下不同的污染机制提供直接证据。我们的结果表明,颗粒的“粘性”可以从质上改变主要的结垢机制。特别是,在分别由 PVDF 和 PTFE 组成的两种不同微滤膜中,在“粘附”和“减少粘附”条件下,有效通量、粒子速度和路径曲折的演变被发现系统地不同。在“粘连”条件下,结垢速度很快,观察到个别通路随着流量的减少而消失。然而,在整个结垢过程中,平均粒子速度和粒子轨迹的曲折度没有变化,这与随机路径的完全阻塞一致。相反,在“减少粘附”条件下,平均颗粒速度降低,颗粒路径的曲折度随着污垢系统地增加,与导致阻力增加的路径逐渐变窄一致。通过这种方法获得的关于膜中粒子动力学的综合信息将有助于减少污染分离过程的设计和优化,并促进对复杂传质的理解。并且观察到个别通路随着通量的减少而消失。然而,在整个结垢过程中,平均粒子速度和粒子轨迹的曲折度没有变化,这与随机路径的完全阻塞一致。相反,在“减少粘附”条件下,平均颗粒速度降低,颗粒路径的曲折度随着污垢系统地增加,与导致阻力增加的路径逐渐变窄一致。通过这种方法获得的关于膜中粒子动力学的综合信息将有助于减少污染分离过程的设计和优化,并促进对复杂传质的理解。并且观察到个别通路随着通量的减少而消失。然而,在整个结垢过程中,平均粒子速度和粒子轨迹的曲折度没有变化,这与随机路径的完全阻塞一致。相反,在“减少粘附”条件下,平均颗粒速度降低,颗粒路径的曲折度随着污垢系统地增加,与导致阻力增加的路径逐渐变窄一致。通过这种方法获得的关于膜中粒子动力学的综合信息将有助于减少污染分离过程的设计和优化,并促进对复杂传质的理解。在整个结垢过程中,平均粒子速度和粒子轨迹的曲折度没有变化,这与随机路径的完全阻塞一致。相反,在“减少粘附”条件下,平均颗粒速度降低,颗粒路径的曲折度随着污垢系统地增加,与导致阻力增加的路径逐渐变窄一致。通过这种方法获得的关于膜中粒子动力学的综合信息将有助于减少污染分离过程的设计和优化,并促进对复杂传质的理解。在整个结垢过程中,平均粒子速度和粒子轨迹的曲折度没有变化,这与随机路径的完全阻塞一致。相反,在“减少粘附”条件下,平均颗粒速度降低,颗粒路径的曲折度随着污垢系统地增加,与导致阻力增加的路径逐渐变窄一致。通过这种方法获得的关于膜中粒子动力学的综合信息将有助于减少污染分离过程的设计和优化,并促进对复杂传质的理解。平均粒子速度降低,粒子路径的曲折度随着污垢系统地增加,这与导致阻力增加的路径逐渐变窄一致。通过这种方法获得的关于膜中粒子动力学的综合信息将有助于减少污染分离过程的设计和优化,并促进对复杂传质的理解。平均粒子速度降低,粒子路径的曲折度随着污垢系统地增加,这与导致阻力增加的路径逐渐变窄一致。通过这种方法获得的关于膜中粒子动力学的综合信息将有助于减少污染分离过程的设计和优化,并促进对复杂传质的理解。
更新日期:2018-10-01
down
wechat
bug