当前位置: X-MOL 学术Catal. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elucidating the active sites for CO2 electroreduction on ligand-protected Au25 nanoclusters†
Catalysis Science & Technology ( IF 5 ) Pub Date : 2018-06-29 00:00:00 , DOI: 10.1039/c8cy01099d
Natalie Austin 1, 2, 3, 4 , Shuo Zhao 3, 4, 5, 6 , James R. McKone 1, 2, 3, 4 , Rongchao Jin 3, 4, 5, 6 , Giannis Mpourmpakis 1, 2, 3, 4
Affiliation  

Using density functional theory (DFT) calculations, we investigated the electrochemical reduction of CO2 and the competing H2 evolution reaction on ligand-protected Au25 nanoclusters (NCs) of different charge states, Au25(SR)18q (q = −1, 0, +1). Our results showed that regardless of charge state, CO2 electroreduction over Au25(SR)18q NCs was not feasible because of the extreme endothermicity to stabilize the carboxyl (COOH) intermediate. When we accounted for the removal of a ligand (both –SR and –R) from Au25(SR)18q under electrochemical conditions, surprisingly we found that this is a thermodynamically feasible process at the experimentally applied potentials with the generated surface sites becoming active centers for electrocatalysis. In every case, the negatively charged NCs, losing a ligand from their surface during electrochemical conditions, were found to significantly stabilize the COOH intermediate, resulting in dramatically enhanced CO2 reduction. The generated sites for CO2 reduction were also found to be active for H2 evolution, which agrees with experimental observations that these two processes compete. Interestingly, we found that the removal of an –R ligand from the negatively charged NC, resulted in a catalyst that was both active and selective for CO2 reduction. This work highlights the importance of both the overall charge state and generation of catalytically active surface sites on ligand-protected NCs, while elucidating the CO2 electroreduction mechanisms. Overall, our work rationalizes a series of experimental observations and demonstrates pathways to convert a very stable and catalytically inactive NC to an active electrocatalyst.

中文翻译:

阐明在配体保护的Au 25纳米团簇上进行CO 2电还原的活性位点

使用密度泛函理论(DFT)计算,我们研究了CO的电化学还原2和竞争ħ 2上的配体保护的金析出反应25不同的电荷状态,Au中的纳米团簇(NCS)25(SR)18 qq = - 1、0,+ 1)。我们的结果表明,无论处于何种电荷状态,由于Au2 (SR)18 q NCs的极高吸热性可稳定羧基(COOH)中间体,因此在Au 25(SR)18 q NCs上进行CO 2电还原是不可行的。当我们考虑从Au 25(SR)18 q去除配体(–SR和–R)时在电化学条件下,令人惊讶地我们发现,在实验施加的电势下,这是一个热力学可行的过程,生成的表面位点成为电催化的活性中心。在每种情况下,发现在电化学条件下从其表面​​失去配体的带负电荷的NC可以显着稳定COOH中间体,从而显着提高CO 2的还原率。还发现所产生的用于CO 2还原的位点对于H 2的释放是活跃的,这与这两个过程竞争的实验观察结果一致。有趣的是,我们发现从带负电荷的NC中除去–R配体后,得到的催化剂对CO既有活性又具有选择性2减少。这项工作突出了总体电荷状态和在配体保护的NC上产生催化活性表面位点的重要性,同时阐明了CO 2的电还原机理。总体而言,我们的工作合理化了一系列实验观察结果,并演示了将非常稳定且无催化活性的NC转化为活性电催化剂的途径。
更新日期:2018-06-29
down
wechat
bug