当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Semiconductor Nanomembrane Materials for High Performance Soft Electronic Devices
Journal of the American Chemical Society ( IF 15.0 ) Pub Date : 2018-06-27 , DOI: 10.1021/jacs.8b04225
Mikayla A. Yoder 1, 2 , Zheng Yan 3 , Mengdi Han 4 , John A. Rogers 2, 4 , Ralph G. Nuzzo 1, 2, 5
Affiliation  

The development of methods to synthesize and physically manipulate extremely thin, single-crystalline inorganic semiconductor materials, so-called nanomembranes, has led to an almost explosive growth of research worldwide into uniquely enabled opportunities for their use in new "soft" and other unconventional form factors for high-performance electronics. The unique properties that nanomembranes afford, such as their flexibility and lightweight characteristics, allow them to be integrated into electronic and optoelectronic devices that, in turn, adopt these unique attributes. For example, nanomembrane devices are able to make conformal contact to curvilinear surfaces and manipulate strain to induce the self-assembly of various 3D nano/micro device architectures. Further, thin semiconductor materials (e.g., Si-nanomembranes, transition metal dichalcogenides, and phosphorene) are subject to the impacts of quantum and other size-dependent effects that in turn enable the manipulation of their bandgaps and the properties of electronic and optoelectronic devices fabricated from them. In this Perspective, nanomembrane synthesis techniques and exemplary applications of their use are examined. We specifically describe nanomembrane chemistry exploiting high-performance materials, along with precise/high-throughput techniques for their manipulation that exemplify their growing capacities to shape outcomes in technology. Prominent challenges in the chemistry of these materials are presented along with future directions that might guide the development of next generation nanomembrane-based devices.

中文翻译:

用于高性能软电子器件的半导体纳米膜材料

合成和物理操作极薄的单晶无机半导体材料(即所谓的纳米膜)的方法的发展导致全球范围内的研究几乎呈爆炸性增长,为它们以新的“软”和其他非常规形式使用提供了独特的机会高性能电子产品的因素。纳米膜提供的独特特性,例如它们的柔韧性和轻质特性,使它们能够集成到电子和光电设备中,而这些设备又采用了这些独特的属性。例如,纳米膜器件能够与曲线表面进行共形接触并操纵应变以诱导各种 3D 纳米/微米器件架构的自组装。此外,薄半导体材料(例如,Si-纳米膜、过渡金属二硫属化物和磷烯)会受到量子和其他尺寸相关效应的影响,进而能够操纵它们的带隙以及由它们制造的电子和光电器件的特性。在这个视角中,研究了纳米膜合成技术及其使用的示例性应用。我们特别描述了利用高性能材料的纳米膜化学,以及用于其操作的精确/高通量技术,这些技术体现了它们在塑造技术成果方面不断增长的能力。这些材料化学方面的突出挑战以及可能指导下一代基于纳米膜的设备的发展的未来方向一起被提出。和磷烯)受到量子和其他尺寸相关效应的影响,这些效应反过来能够操纵它们的带隙以及由它们制造的电子和光电器件的特性。在这个视角中,研究了纳米膜合成技术及其使用的示例性应用。我们特别描述了利用高性能材料的纳米膜化学,以及用于其操作的精确/高通量技术,这些技术体现了它们在塑造技术成果方面不断增长的能力。这些材料化学方面的突出挑战以及可能指导下一代基于纳米膜的设备的发展的未来方向一起被提出。和磷烯)受到量子和其他尺寸相关效应的影响,这些效应反过来能够操纵它们的带隙以及由它们制造的电子和光电器件的特性。在这个视角中,研究了纳米膜合成技术及其使用的示例性应用。我们特别描述了利用高性能材料的纳米膜化学,以及用于其操作的精确/高通量技术,这些技术体现了它们在塑造技术成果方面不断增长的能力。这些材料化学方面的突出挑战以及可能指导下一代基于纳米膜的设备的发展的未来方向一起被提出。
更新日期:2018-06-27
down
wechat
bug