当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A comprehensively theoretical and experimental study of carrier generation and transport for achieving high performance ternary blend organic solar cells
Nano Energy ( IF 17.6 ) Pub Date : 2018-06-21 , DOI: 10.1016/j.nanoen.2018.06.069
Zi Shuai Wang , Xingang Ren , Xiaopeng Xu , Qiang Peng , Wei E.I. Sha , Wallace C.H. Choy

Ternary blend organic solar cells (OSCs) composed of three components in the active layer shows the potential to achieve higher power conversion efficiency (PCE) as compared to the binary counterpart due to the wider absorption spectrum, higher generation rate, and better morphology. However, the physical understanding of carrier generation and transport processes in the ternary blend OSCs has been limited explored. In the work, together with experimental studies of the two donors, one acceptor ternary blend OSCs with PCE > 12%, we will theoretically and experimentally describe the roles of the carrier generation (including exciton transfer, delocalization and dissociation), and carrier transport (particularly the hole transport) on the performance of ternary blend OSCs. Through theoretical and experimental investigations, critical design rules for improving the device performance are concluded: (1) improving the exciton delocalization ratio via donor ratio optimization with physical understanding, (2) selecting the donors with well overlap of emission and absorption spectra to promote a beneficial exciton transfer, (3) engineering the energy level of donors to form the blocking barrier for reducing hole transfer into the donor with high recombination loss. The work unveils the device physics which is fundamentally important for designing and optimizing high-performance ternary blend OSCs.



中文翻译:

为实现高性能三元共混有机太阳能电池而进行的载流子产生和输运的全面理论和实验研究

与三元混合有机太阳能电池(OSC)相比,由于其更宽的吸收光谱,更高的生成速率和更好的形貌,因此与二元混合有机太阳能电池(OSC)相比,具有实现更高功率转换效率(PCE)的潜力。但是,在三元混合OSC中对载流子产生和运输过程的物理理解已经受到了有限的探索。在这项工作中,连同对两个供体,一个PCE> 12%的受体三元共混OSC的实验研究,我们将在理论上和实验上描述载体生成(包括激子转移,离域和解离)和载体运输( (尤其是空穴传输)对三元混合OSC的性能的影响。通过理论和实验研究,得出了改善器件性能的关键设计规则:(1)通过物理理解优化施主比来提高激子离域比,(2)选择发射光谱和吸收光谱具有良好重叠的施主,以促进有益的激子转移,(3 )对施主的能级进行工程设计,以形成阻挡层,以减少空穴转移到具有高重组损失的施主中。这项工作揭示了器件物理原理,这对于设计和优化高性能三元混合OSC至关重要。(3)设计供体的能级,以形成阻挡势垒,以减少空穴转移到具有高复合损失的供体中。这项工作揭示了器件物理原理,这对于设计和优化高性能三元混合OSC至关重要。(3)设计供体的能级,以形成阻挡势垒,以减少空穴转移到具有高复合损失的供体中。这项工作揭示了器件物理原理,这对于设计和优化高性能三元混合OSC至关重要。

更新日期:2018-06-21
down
wechat
bug