当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polyol synthesis of reduced graphene oxide supported platinum electrocatalysts for fuel cells: Effect of Pt precursor, support oxidation level and pH
International Journal of Hydrogen Energy ( IF 7.2 ) Pub Date : 2018-06-21 , DOI: 10.1016/j.ijhydene.2018.05.147
Lee Pak Hoe , Marta Boaventura , Tiago Lagarteira , Loh Kee Shyuan , Adélio Mendes

In this work, a comprehensive study on the polyol synthesis of platinum supported on reduced graphene oxide (Pt/rGO) catalysts, including both ex-situ and in-situ characterizations of the prepared Pt/rGO catalysts, was performed. The polyol synthesis was studied considering the influence of the platinum precursor, oxidation level of graphite oxide and pH of reaction medium. The as-prepared catalysts were analyzed using thermo-gravimetric (TG) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and cyclic voltammetry (CV). The best results in terms of platinum particle size and distribution were obtained when the synthesis was performed in acidic medium, using chloroplatinic acid as precursor and using graphene oxide with high oxidation level. The most promising graphene-supported catalyst was used to prepare a polymer electrolyte membrane fuel cell electrode. The membrane electrode assembly (MEA) prepared with graphene-based electrode was compared with a MEA prepared with catalyst based on commercial platinum supported in carbon black (Pt/C). Single cell characterization included polarization curves and in-situ electrochemical impedance spectroscopy (EIS). The graphene-based electrode presented promising albeit unstable electrochemical performance due to water management issues. Additionally, EIS measurements revealed that the MEA made with Pt/rGO catalyst presented a lower mass transport resistance than the commercial Pt/C.



中文翻译:

用于燃料电池的还原型氧化石墨烯负载的铂电催化剂的多元醇合成:Pt前体,载体氧化水平和pH值的影响

在这项工作中,对还原型氧化石墨烯(Pt / rGO)催化剂上负载的铂的多元醇合成进行了全面的研究,包括制备的Pt / rGO催化剂的异位和原位表征。考虑到铂前体,氧化石墨的氧化水平和反应介质的pH值的影响,对多元醇的合成进行了研究。使用热重(TG)分析,扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线光电子能谱(XPS),X射线衍射(XRD)和循环伏安法(简历)。当在酸性介质中,以氯铂酸为前体,并使用氧化水平高的氧化石墨烯进行合成时,可获得最佳的铂粒度和分布结果。最有前途的石墨烯负载催化剂用于制备聚合物电解质膜燃料电池电极。将用石墨烯基电极制备的膜电极组件(MEA)与用基于炭黑中负载的商用铂(Pt / C)的催化剂制备的MEA进行比较。单细胞表征包括极化曲线和原位电化学阻抗谱(EIS)。尽管由于水管理问题而使电化学性能不稳定,但基于石墨烯的电极仍显示出良好的前景。此外,EIS测量结果表明,用Pt / rGO催化剂制成的MEA的传质阻力比市售Pt / C低。将用石墨烯基电极制备的膜电极组件(MEA)与用基于炭黑中负载的商用铂(Pt / C)的催化剂制备的MEA进行比较。单细胞表征包括极化曲线和原位电化学阻抗谱(EIS)。尽管由于水管理问题而使电化学性能不稳定,但基于石墨烯的电极仍显示出良好的前景。此外,EIS测量结果表明,用Pt / rGO催化剂制成的MEA的传质阻力比市售Pt / C低。将用石墨烯基电极制备的膜电极组件(MEA)与用基于炭黑中负载的商用铂(Pt / C)的催化剂制备的MEA进行比较。单电池表征包括极化曲线和原位电化学阻抗谱(EIS)。尽管由于水管理问题而使电化学性能不稳定,但基于石墨烯的电极仍显示出良好的前景。此外,EIS测量结果表明,用Pt / rGO催化剂制成的MEA的传质阻力比市售Pt / C低。尽管由于水管理问题而使电化学性能不稳定,但基于石墨烯的电极仍显示出良好的前景。此外,EIS测量表明,用Pt / rGO催化剂制备的MEA的传质阻力比市售Pt / C低。尽管由于水管理问题而使电化学性能不稳定,但基于石墨烯的电极仍显示出良好的前景。此外,EIS测量结果表明,用Pt / rGO催化剂制成的MEA的传质阻力比市售Pt / C低。

更新日期:2018-06-21
down
wechat
bug