当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond.
Nature Communications ( IF 16.6 ) Pub Date : 2018-06-19 , DOI: 10.1038/s41467-018-04798-1
Amila Ariyaratne , Dolev Bluvstein , Bryan A. Myers , Ania C. Bleszynski Jayich

The electrical conductivity of a material can feature subtle, non-trivial, and spatially varying signatures with critical insight into the material's underlying physics. Here we demonstrate a conductivity imaging technique based on the atom-sized nitrogen-vacancy (NV) defect in diamond that offers local, quantitative, and non-invasive conductivity imaging with nanoscale spatial resolution. We monitor the spin relaxation rate of a single NV center in a scanning probe geometry to quantitatively image the magnetic fluctuations produced by thermal electron motion in nanopatterned metallic conductors. We achieve 40-nm scale spatial resolution of the conductivity and realize a 25-fold increase in imaging speed by implementing spin-to-charge conversion readout of a shallow NV center. NV-based conductivity imaging can probe condensed-matter systems in a new regime not accessible to existing technologies, and as a model example, we project readily achievable imaging of nanoscale phase separation in complex oxides.

中文翻译:

使用金刚石中的氮空位中心进行纳米级电导率成像。

材料的电导率可以具有微妙的,非平凡的且在空间上变化的特征,并具有对材料的基础物理的批判性见识。在这里,我们展示了一种基于金刚石中原子大小的氮空位(NV)缺陷的电导率成像技术,该技术可提供具有纳米级空间分辨率的局部,定量和非侵入性电导率成像。我们在扫描探针的几何形状中监视单个NV中心的自旋弛豫率,以定量成像纳米图案化金属导体中由热电子运动产生的磁涨落。通过实现浅NV中心的自旋至电荷转换读数,我们实现了电导率的40 nm尺度空间分辨率,并实现了成像速度25倍的增长。
更新日期:2018-06-19
down
wechat
bug