当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries†
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2018-06-16 00:00:00 , DOI: 10.1039/c8ee01046c
Caixia Li 1, 2, 3 , Shihua Dong 1, 2, 3 , Rui Tang 1, 2, 3 , Xiaoli Ge 1, 2, 3 , Zhiwei Zhang 1, 2, 3 , Chengxiang Wang 1, 2, 3 , Yupeng Lu 1, 2, 3 , Longwei Yin 1, 2, 3
Affiliation  

Confronted with challenges in promoting fast AlxCly anion diffusion and intercalation for aluminum ion batteries (AIBs), it is of vital importance to rationally design gradient hetero-interfaces with an ideal built-in interfacial electric potential to enhance charge diffusion and transfer kinetics. Herein, we demonstrate an effective strategy to realize accurate tuning gradient heteroatom N and P doping in MOF-derived porous carbon in C@N-C@N,P-C graded heterostructures. Importantly, gradient N and P doping could modify the electronic structure of MOF-derived carbon as certified by DFT calculations, and lead to charge redistribution to induce graded energy levels and a built-in electric field in the C@N-C@N,P-C graded heteroatomic interface, thus boosting interfacial charge transfer and accelerating reaction kinetics. Furthermore, the large surface area and high porosity of C@N-C@N,P-C graded heterostructures could efficiently absorb electrolyte and enhance anion transport kinetics. As expected, the designed gradiently N,P-doped C@N-C@N,P-C heterostructure with a built-in interfacial electric field could facilitate electron and AlCl4 anion transfer spontaneously between N,P-C, N-C and C gradient components, exhibiting a superior capacity of 98 mA h g−1 at a high current density of 5 A g−1 after 2500 cycles. This strategy reveals new insights about the gradient energy band for designing high-performance electrochemical energy storage devices.

中文翻译:

MOF衍生的碳异质结构的杂原子界面工程,具有内置电场效应,适用于高性能Al-离子电池

面对促进快速Al x Cl y的挑战-对于铝离子电池(AIB)的阴离子扩散和嵌入,合理设计具有理想的内置界面电势的梯度异质界面以增强电荷扩散和传输动力学至关重要。在本文中,我们证明了一种有效的策略,可在C @ NC @ N,PC分级异质结构中,在MOF衍生的多孔碳中实现精确调谐梯度杂原子N和P掺杂。重要的是,梯度N和P掺杂可以通过DFT计算证明,改变由MOF衍生的碳的电子结构,并导致电荷重新分布,从而在C @ NC @ N,PC分级的C @ NC @ N,PC中产生分级的能级和内置电场杂原子界面,从而促进了界面电荷转移并加速了反应动力学。此外,C @ NC @ N的大表面积和高孔隙率,PC级异质结构可有效吸收电解质并增强阴离子传输动力学。如预期的那样,设计的具有内置界面电场的渐变N,P掺杂C @ NC @ N,PC异质结构可以促进电子和AlCl4 - N,PC,NC和C梯度分量,显示出98毫安Hg的优异的容量之间阴离子转移自发-1以5克的高电流密度-1 2500次循环之后。该策略揭示了有关设计高性能电化学能量存储设备的梯度能带的新见解。
更新日期:2018-06-16
down
wechat
bug