当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analytical solutions of an isothermal two-dimensional model of a cathode flow channel in a proton exchange membrane fuel cell
Chemical Engineering Science ( IF 4.7 ) Pub Date : 2018-11-01 , DOI: 10.1016/j.ces.2018.06.025
Aniket U. Thosar , Ashish K. Lele

Abstract Two key assumptions are usually made while deriving analytical solutions of coupled kinetics and transport equations in a single channel on the cathode plate of a proton exchange membrane fuel cell (PEMFC). These are: plug flow and uniform oxygen concentration along the depth of the channel. However these assumptions are not always valid under typical operating conditions of a PEMFC, and particularly so at high current density. In this article we relax these two assumptions and present approximate analytical solutions of the governing equations using the methodology of separation of variables followed by power series solution. Spatial profiles of oxygen concentration and current density were derived, which led to the final derivation of a comprehensive current-potential relationship (polarization curve) in the reaction-controlled regime of an operational PEMFC. We compare polarization curves predicted by the present model with predictions of the earlier analytical model and also with a complete 3D-simulation of the same flow geometry and operation conditions. The local profiles of oxygen concentration and the polarization curve predicted by the present model compare far better with the 3D simulations than the earlier analytical model. While this comparison highlights the importance of the effects of finite oxygen diffusion rate and velocity profile in the channel on the polarization curves, it also points to other important factors that affect the current-potential relation.

中文翻译:

质子交换膜燃料电池阴极流道等温二维模型解析解

摘要 在推导质子交换膜燃料电池 (PEMFC) 阴极板上单个通道中耦合动力学和传输方程的解析解时,通常会做出两个关键假设。它们是:沿通道深度的活塞流和均匀的氧气浓度。然而,这些假设在 PEMFC 的典型操作条件下并不总是有效,尤其是在高电流密度下。在本文中,我们放宽了这两个假设,并使用变量分离法和幂级数解法来给出控制方程的近似解析解。导出氧浓度和电流密度的空间分布,这导致了在操作 PEMFC 的反应控制机制中综合电流-电位关系(极化曲线)的最终推导。我们将当前模型预测的极化曲线与早期分析模型的预测以及相同流动几何形状和操作条件的完整 3D 模拟进行比较。本模型预测的局部氧浓度分布和极化曲线与 3D 模拟相比,比早期的分析模型要好得多。虽然这种比较突出了通道中有限氧扩散速率和速度分布对极化曲线影响的重要性,但它也指出了影响电流-电位关系的其他重要因素。我们将当前模型预测的极化曲线与早期分析模型的预测以及相同流动几何形状和操作条件的完整 3D 模拟进行比较。本模型预测的局部氧浓度分布和极化曲线与 3D 模拟相比,比早期的分析模型要好得多。虽然这种比较突出了通道中有限氧扩散速率和速度分布对极化曲线影响的重要性,但它也指出了影响电流-电位关系的其他重要因素。我们将当前模型预测的极化曲线与早期分析模型的预测以及相同流动几何形状和操作条件的完整 3D 模拟进行比较。本模型预测的局部氧浓度分布和极化曲线与 3D 模拟相比,比早期的分析模型要好得多。虽然这种比较突出了通道中有限氧扩散速率和速度分布对极化曲线影响的重要性,但它也指出了影响电流-电位关系的其他重要因素。本模型预测的局部氧浓度分布和极化曲线与 3D 模拟相比,比早期的分析模型要好得多。虽然这种比较突出了通道中有限氧扩散速率和速度分布对极化曲线影响的重要性,但它也指出了影响电流-电位关系的其他重要因素。本模型预测的局部氧浓度分布和极化曲线与 3D 模拟相比,比早期的分析模型要好得多。虽然这种比较突出了通道中有限氧扩散速率和速度分布对极化曲线影响的重要性,但它也指出了影响电流-电位关系的其他重要因素。
更新日期:2018-11-01
down
wechat
bug