当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial engineering enables [email protected]x microspheres as superpower and long life anode for lithium-ion batteries
Nano Energy ( IF 17.6 ) Pub Date : 2018-06-15 , DOI: 10.1016/j.nanoen.2018.06.051
Zhen-Dong Huang , Hao Lu , Kun Qian , Yan-Wu Fang , Qing-Chuan Du , Yan-Bing He , Titus Masese , Xu-Sheng Yang , Yan-Wen Ma , Wei Huang

Bismuth (Bi), a uniquely stable pnictogen element, is deemed a promising anode material for lithium-ion batteries owing to its high volumetric capacity, moderate operating voltage and environmental friendliness. However, the application of Bi as anode is hindered by its low conductivity and large volume change during cycling. Herein, we introduce an advanced surface engineering strategy to construct [email protected]x microspheres encapsulated by ultra-large graphene interfacial layer. Ultrafine Bi nanoparticles are confined and uniformly dispersed inside the C-TiOx matrix, which is the pyrolysis derivative of the newly developed Bi-Ti-EG bimetal organic frameworks, with the aid of a selective graphene interfacial barrier. A three-dimensional (3D) long-range conductive network is successfully constructed by the ultra-large graphene and the carbonized derivative of Bi-Ti-EG. Additionally, the 3D carbon network and the in-situ formed TiOx coupled with a porous structure act as soft buffer and hard suppressor to alleviate the huge volume change of Bi during cycling, and they also are the important electrochemically active components. Thanks to the synergistic effects intrigued by the aforementioned interfacial engineering strategy, the newly developed ultra-large graphene encapsulated [email protected]x microspheres exhibit an exceptional superpower and outstanding cycle stability (namely, 333.3, 275 and 225 mAh g−1 at 1, 5 and 10 A g−1, respectively, with remarkable capacity retention upon 5000 cycles), surpassing other reported Bi-based anode materials so far. This study underpins that the nanoscale surface design of electrode materials for batteries is an effective approach to significantly enhance the power capability, capacity and cyclic stability of new metal anodes.



中文翻译:

界面工程使[受电子邮件保护] x微球成为锂离子电池的超功率和长寿命阳极

铋(Bi)是一种独特的稳定光电子元素,由于其高容量,适中的工作电压和环境友好性,被认为是锂离子电池的有前途的阳极材料。然而,由于Bi的低电导率和循环过程中的大体积变化,阻碍了Bi作为阳极的应用。在这里,我们介绍了一种先进的表面工程策略,以构造由超大石墨烯界面层封装的[受电子邮件保护的] x微球。超细Bi纳米颗粒被限制并均匀地分散在C-TiO x内基质,它是新开发的Bi-Ti-EG双金属有机骨架的热解衍生物,借助选择性石墨烯界面阻挡层。通过超大石墨烯和Bi-Ti-EG的碳化衍生物成功构建了三维(3D)远程导电网络。此外,3D碳网络和原位形成的TiO x与多孔结构耦合,可作为软缓冲剂和硬抑制剂来缓解Bi在循环过程中的巨大体积变化,它们也是重要的电化学活性成分。由于上述界面工程策略引起的协同效应,新开发的超大型石墨烯被封装[受电子邮件保护] x微球具有超强的超能力和出色的循环稳定性(分别在1、5和10 A g -1时分别为333.3、275和225 mAh g -1,在5000次循环时具有显着的容量保持能力),超过了其他报道的Bi基阳极到目前为止的材料。这项研究表明,电池电极材料的纳米级表面设计是有效提高新金属阳极的动力容量,容量和循环稳定性的有效方法。

更新日期:2018-06-15
down
wechat
bug