当前位置: X-MOL 学术Chem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In This Issue
Chem ( IF 23.5 ) Pub Date : 2018-06-14 , DOI: 10.1016/j.chempr.2018.05.024


Despite the promise for high energy density, the practical applications of Li-air batteries have been undermined by a number of safety concerns. These issues arise from the high reactivity of the cathode, electrolyte, and anode in the presence of oxygen species, along with the instability of the organic electrolytes. In this issue ofChem, Dong et al. address the challenge of finding a stable electrolyte for Li-O2batteries by designing a super-concentrated LiTFSI aqueous solution called water in salt (WiS). With water replacing the organic electrolytes, the reversible Li2O2↔ O2conversion is favored and generates a higher capacity. The designed WiS electrolyte meets the stability requirements necessary and therefore sets a new benchmark in Li-air battery performance. In their Catalysis piece, Geoffrey Ozin and Todd Siler discuss the feasibility of scenarios that envisage that artificial-intelligence-driven machines of the future will independently discover totally new classes of materials, inaccessible even by human imagination and creativity.

中文翻译:

在这个问题上

尽管有望实现高能量密度,但由于许多安全问题,锂空气电池的实际应用受到了损害。这些问题源于在存在氧的情况下阴极,电解质和阳极的高反应性,以及有机电解质的不稳定性。在Chem的这一期中,Dong等人。通过设计称为盐包水(WiS)的超浓缩LiTFSI水溶液,解决了为Li-O2电池找到稳定电解质的挑战。用水代替有机电解质,可逆的Li2O2↔O2转化率得到了提高,并产生了更高的容量。设计的WiS电解质满足必要的稳定性要求,因此在锂空气电池性能方面树立了新的标杆。在他们的催化文章中,
更新日期:2018-06-14
down
wechat
bug