当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low cost and stable quinoxaline-based hole-transporting materials with a D–A–D molecular configuration for efficient perovskite solar cells†
Chemical Science ( IF 8.4 ) Pub Date : 2018-06-13 00:00:00 , DOI: 10.1039/c8sc00731d
Hao Zhang 1, 2, 3, 4, 5 , Yongzhen Wu 1, 2, 3, 4, 5 , Weiwei Zhang 1, 2, 3, 4, 5 , Erpeng Li 1, 2, 3, 4, 5 , Chao Shen 1, 2, 3, 4, 5 , Huiyun Jiang 1, 2, 3, 4, 5 , He Tian 1, 2, 3, 4, 5 , Wei-Hong Zhu 1, 2, 3, 4, 5
Affiliation  

The use of expensive hole transporting materials (HTMs), such as spiro-OMeTAD, in perovskite solar cells (PSCs) is one of the critical bottlenecks to hinder their large-scale applications. Some low-cost alternatives have been developed by combining conjugated electron-rich cores with arylamine end-caps, usually in a donor–π spacer–donor (D–π–D) molecular configuration. However, incorporation of electron-rich cores can lead to undesirable up-shift in the HOMO energy level and low stability, and few of these new HTMs can outperform spiro-OMeTAD in terms of device efficiency. Given that electron-deficient units have shown many advantages in developing efficient and stable photovoltaic dyes and polymers, we herein present a couple of novel molecular quinoxaline-based HTMs (TQ1 and TQ2) with a donor–acceptor–donor (D–A–D) configuration, especially for rationally modulating the HOMO level, improving the stability and decreasing the cost. The TQ2-based PSCs exhibit a maximum efficiency of 19.62% (working area of 0.09 cm2), unprecedentedly outperforming that of spiro-OMeTAD (18.54%) under the same conditions. In comparison, TQ1 based devices only showed moderate efficiencies (14.27%). The differences in hole extraction and transportation between TQ1 and TQ2 are explored by photoluminescence quenching, mobility and conductivity tests, and single crystal analysis. The scaling-up of the TQ2 based device to 1.02 cm2 achieves a promising efficiency of 18.50%, indicative of high film uniformity and processing scalability. The significant cost advantage and excellent photovoltaic performance strongly indicate that the D–A–D featured TQ2 has great potential for future practical applications.

中文翻译:

低成本,稳定的喹喔啉基空穴传输材料,具有D–A–D分子构型,可用于高效钙钛矿太阳能电池

在钙钛矿型太阳能电池(PSC)中使用昂贵的空穴传输材料(HTM),例如spiro-OMeTAD,是阻碍其大规模应用的关键瓶颈之一。通过将共轭富电子核与芳胺端帽结合在一起,通常以供体-π间隔-供体(D-π-D)分子构型结合,已经开发出了一些低成本的替代品。但是,掺入富含电子的核可能导致HOMO能级出现不希望的上移和低稳定性,并且就器件效率而言,这些新的HTM中很少有可以胜过spiro-OMeTAD的。鉴于缺电子单元在开发高效且稳定的光伏染料和聚合物方面显示出许多优势,我们在此提出了两种基于分子喹喔啉的新型HTM(TQ1TQ2)具有供体-受主-供体(D–A–D)的配置,尤其是为了合理地调节HOMO水平,提高稳定性和降低成本。基于TQ2的PSC的最大效率为19.62%(工作面积为0.09 cm 2),在相同条件下前所未有地超过了spiro-OMeTAD的效率(18.54%)。相比之下,基于TQ1的设备仅显示中等效率(14.27%)。通过光致发光猝灭,迁移率和电导率测试以及单晶分析,探索了TQ1TQ2在空穴提取和传输方面的差异。基于TQ2的设备的放大比例为1.02 cm 2达到了18.50%的有前途的效率,这表明了高薄膜均匀性和加工可扩展性。显着的成本优势和出色的光伏性能强烈表明具有D–A–D功能的TQ2在未来的实际应用中具有巨大的潜力。
更新日期:2018-06-13
down
wechat
bug