显示样式:     当前期刊: Chemistry Education Research and Practice    加入关注       排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • The Effect of the REACT Strategy on Students’ Achievements with Regard to Solubility Equilibrium: Using Chemistry in Contexts
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-18
    Tugce Gunter

    The objective of this research was to investigate the effect of a context-based approach (CBA) ‘Relating, Experiencing, Applying, Cooperating, Transferring’ (REACT) strategy used in relation to the topic of solubility equilibrium in the laboratory chemistry course on students’ achievement at associate level in a health-related program. In this regard, two contexts related to the topic of solubillity equilibrium were developed and applied. The study had pre-test post-test with a control group research design and the participants consisted of sophomore students studying in the Medical Laboratory Techniques (MLT) and the Pharmacy Services (PS) Programs of the Ahmet Erdogan Vocational School of Health Services at Bulent Ecevit University (N=96). The students enrolled in the MLT program were randomly assigned as the experimental group (n=47) and the students in the PS program were randomly assigned as the control group (n=49). The experimental group was taught solubility equilibrium by a CBA REACT strategy, whereas the control group was taught the relevant topic by conventional teaching. The ‘Equilibrium of Solubility Achievement Test (ESAT)’ and ‘Structured Interview Form’ were used as data collection tools in the research. The results of content analysis of ESAT post-test showed that the frequency of answers in the sound understanding category was higher for the experimental group compared to the control group students. In addition, the results of Mann-Whitney U and Wilcoxon tests of the ESAT indicated that post-test scores were higher in both groups compared to pre-test scores and the increase was higher in the experimental group compared to the control group. The content analysis results of structured interview form and semi-structured interviews showed that the students expressed positive views concerning the instruction and the qualities of the contexts in general. In this research, it was concluded that the CBA REACT strategy used in relation to the topic of solubility equilibrium in the laboratory chemistry course improved students’ sound understanding and achievement and helped them develop positive views regarding the instruction and the quality of the contexts.

    更新日期:2018-07-19
  • The Influence of the Explicit Nature of Science Instruction Embedded in the Argument-Driven Inquiry Method in Chemistry Laboratory on High School Students’ Conceptions about Nature of Science
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-17
    Guluzar Eymur

    The aim of the present study was to investigate the influence of explicit nature of science instruction embedded in the Argument-Driven Inquiry method compared with an implicit inquiry method on eleventh-grade students’ conceptions of NOS. The study used pre-/post-test control group design to investigate the influence of explicit nature of science instruction embedded in Argument-Driven Inquiry method on eleventh grade students’ understanding of NOS. The qualitative method was used to identify the students’ views of NOS. The study involved 45 students (grade 11) enrolled in a chemistry course at public Anatolian high school in the northeast of Turkey. The explicit group included 24 students (10 girls and 14 boys) and the implicit group included 21 students (12 girls and 9 boys) with the ages ranging from 17 to 18 years. Both groups were instructed for two 45-minute sessions per week over the course of 9 weeks. However, the explicit group participated laboratory activities designed by ADI method with explicit NOS instruction, whereas the implicit group was taught by structured inquiry (SI) instructional model. Students were interviewed using VNOS-B interview schedule to evaluate the students’ understanding of NOS. In data analysis, we coded views as an informed view that had the accepted views, a transitional view that had partially accepted views or a naïve view that had unaccepted views of the seven characteristics of NOS based on literature. The results of the study showed significant differences between the pre- to post test scores for the explicit group in terms of NOS views. However, the post-instruction views of the implicit group were not different from their previous NOS views. We believe that the explicit nature of science instruction embedded in ADI method has a noticeable potential in order to improve high school students’ views about NOS.

    更新日期:2018-07-18
  • Partial least squares structural equation modeling of chemistry attitude in introductory college chemistry
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-10
    James Ross, Leslie Nuñez, Chinh Chu Lai

    Students’ decisions to enter or persist in STEM courses is linked with their affective domain. The influence of factors impacting students’ affective domain in introductory college chemistry classes, such as attitude, is often overlooked by instructors, who instead focus on students’ mathematical abilities as sole predictors of academic achievement. The current academic barrier to enrollment in introductory college chemistry classes is typically a passing grade in a mathematics prerequisite class. However, mathematical ability is only a piece of the puzzle in predicting preparedness for college chemistry. Herein, students’ attitude toward the subject of chemistry was measured using the original Attitudes toward the Subject of Chemistry Inventory (ASCI). Partial least squares structural equation modeling (PLS-SEM) was used to chart and monitor the development of students’ attitude toward the subject of chemistry during an introductory college chemistry course. Results from PLS-SEM support a 3-factor (intellectual accessibility, emotional satisfaction, and interest and utility) structure, which could signal the distinct cognitive, affective, and behavioral components of attitude, according to its theoretical tripartite framework. Evidence of a low-involvement hierarchy of attitude effect is also presented herein. This study provides a pathway for instructors to identify at-risk students, exhibiting low affective characteristics, early in a course so that academic interventions are feasible. The results presented here have implications for the design and implementation of teaching strategies geared toward optimizing student achievement in introductory college chemistry.

    更新日期:2018-07-18
  • Patterns of Reactions: A card sort task to investigate students’ organization of organic chemistry reactions
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-16
    Kelli R. Galloway, Min Wah Leung, Alison B. Flynn

    Research has shown that within a traditional organic chemistry curriculum, organic chemistry students struggle to develop deep conceptual understanding of reactions and attribute little meaning to the electron-pushing formalism. At the University of Ottawa, a new curriculum was developed for organic chemistry in which students are taught the language of the electron-pushing formalism prior to learning about specific reactions. Reactions are then organized by governing pattern of mechanism rather than by functional group and are taught in a gradient of complexity. To investigate how students are making connections across reactions within the new curriculum, a card sort task was developed. The card sort task consisted of 25 cards, each depicting the reactants and solvent for a reaction taught during the two-semester organic chemistry sequence. The first part of the task asked participants to sort 15 of 25 cards into categories. Then, participants were given the 10 remaining cards to incorporate into categories with the previous 15. Participants were asked to explain the characteristics of each category and their sorting process. Students (N=16) in an organic chemistry course were interviewed while enrolled in the second semester course. We analyzed the students’ sorts based on which cards were sorted frequently together, the underlying characteristics used to form the categories, and the participants’ sorting processes. Participants created categories based on different levels of interpreting the reactions on the cards, with levels ranging from recognizing identical structural features to identifying similar types of mechanisms. Based on this study, if we want students to develop mechanistic thinking, we think students need to be more explicitly directed to the patterns present in organic reaction mechanisms and given opportunities to uncover and identify patterns on their own, during both summative and formative assessments.

    更新日期:2018-07-16
  • Postgraduate students' attitudes towards group work: experiences within a forensic chemistry programme
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-10
    Hilary J. Hamnett, Amanda E. McKie, Calum Morrison

    The ability to work in a group is an important skill for graduates. Although the experiences of undergraduate students with group work have been extensively explored, there is much less information in the literature regarding postgraduate students and no information on those enrolled in science programmes. In this study, participants from a taught applied chemistry postgraduate MSc programme report their attitudes and experiences with group work. The usefulness of this approach and of scientific discourse for learning and teaching several key concepts is also explored. Participants in the study completed attitudinal questionnaires and group/individual multiple choice question (MCQ) tests. They reported a range of skills developed through working together, mixed preferences for group vs. individual assignments, and comparison of the mean MCQ test scores between participants working individually and in groups demonstrated no statistically significant differences.

    更新日期:2018-07-14
  • Postsecondary chemistry curricula and universal design for learning: planning for variations in learners’ abilities, needs, and interests
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-02
    Erin Scanlon, Tamra Legron-Rodriguez, Jillian Schreffler, Elijah Ibadlit, Eleazar Vasquez, Jacquelyn J. Chini

    Federal legislation requires equitable access to education for all students at all levels, including in the postsecondary setting. While there have been a few studies in the chemistry education research literature base focused on how to support students with specific disabilities, this work seems to exist as a separate stream of research without direct impact on curriculum development and the overall community. This study focused on investigating how well three sets of general chemistry curricular materials support variations in students’ abilities, interests, and needs. To accomplish this, we compared the curricular materials with the Universal Design for Learning (UDL) framework, which describes steps to account for variations in ability among learners during curriculum development. The UDL framework is organized into three guidelines (multiple means of representation, action and expression, and engagement), further delineated by nine principles and thirty-one finer-grained checkpoints for designing courses. We looked for examples of enactment of the UDL checkpoints in a representative sample of activities. Across all three sets of curricular materials, only four of the thirty-one checkpoints were enacted in at least 75% of the activities, indicating high enactment. On the other hand, eleven of the checkpoints were enacted in less than 25% of the activities, indicating low enactment. Overall, there is much room for improvement in consistently providing support for learner variation within these general chemistry curricular materials. We argue that some of the burden of making curricular materials supportive of all students lies with curriculum developers and provide recommendations for improving support and accessibility.

    更新日期:2018-07-14
  • Teaching and learning chemical bonding: research-based evidence for misconceptions and conceptual difficulties experienced by students in upper secondary schools and the effect of an enriched text
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-18
    Georgios Tsaparlis, Eleni T. Pappa, Bill Byers

    Chemical bonding is a fundamental but complex topic, which has traditionally been associated with learning difficulties, misunderstandings, and misconceptions. This paper reviews some previous studies, concerning students’ conceptual difficulties and reports the findings from a research study with Greek students, which set out to examine their knowledge and understanding of a number of key concepts related to bonding. Three student samples were studied; one consisted of tenth-grade students from three public schools, the second contained first-year chemistry and biology students at the beginning of their university courses, and the third involved tenth-grade students from a prestigious private school. The students generally exhibited limited knowledge and possessed certain misconceptions, with the private school and the university students demonstrating better knowledge than the public school students. A quasi-experimental research design was employed using students from the private school, with some students used as a control group and others as a treatment group. The control group was taught using the standard Greek chemistry textbook, while the treatment group used enriched teaching material. It was found that while the two groups demonstrated similar performance for many bonding concepts, the treatment group did show superior knowledge with respect to a number of issues, such as the role of electrostatic interactions, electronegativity, and bond polarity.

    更新日期:2018-07-14
  • Using 3D printed physical models to monitor knowledge integration in biochemistry
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-05
    Melissa A. Babilonia-Rosa, H. Kenny Kuo, Maria T. Oliver-Hoyo

    Noncovalent interactions determine the three-dimensional structure of macromolecules and the binding interactions between molecules. Students struggle to understand noncovalent interactions and how they relate to structure–function relationships. Additionally, students’ difficulties translating from two-dimensional representations to three-dimensional representations add another layer of complexity found in macromolecules. Therefore, we developed instructional resources that use 3D physical models to target student understanding of noncovalent interactions of small molecules and macromolecules. To this effect, we monitored indicators of knowledge integration as evidenced in student-generated drawings. Analysis of the drawings revealed that students were able to incorporate relevant conceptual features into their drawings from different sources as well as present their understanding from different perspectives.

    更新日期:2018-07-12
  • Developing an understanding of undergraduate student interactions in chemistry laboratories
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-03
    Jianye Wei, Mauro Mocerino, David F. Treagust, Anthony D. Lucey, Marjan G. Zadnik, Euan D. Lindsay, Damien J. Carter

    Laboratories play a crucial role in the undergraduate science curriculum and the effectiveness of learning in laboratories is influenced by learners’ interactions with other students, the instructors, and the equipment used. In this study, a pre-lab survey was used to collect information about students’ expectations of interactions in chemistry laboratories and how they can be ranked according to their importance. Post-lab surveys were used to capture students’ perspectives about the frequency of interactions that existed in laboratory sessions they had completed. Direct observations of some laboratories were also conducted principally to validate students’ self-reported interactions. The data were also sorted by three levels of student achievement in order to relate students’ expectations of the importance of different interactions (pre-lab survey) and their self-reported frequency of interactions (post-lab survey) with their laboratory grades. Results from the pre-lab survey showed that student–instructor interactions were anticipated to be the most important ahead of conducting the laboratory activity, whereas results from the post-lab surveys showed that the most frequent interactions occurred between students. Students’ self-reports (post-lab survey) and the direct observations agreed well suggesting that the post-lab survey is a robust tool for capturing the frequencies of student interactions in this and future studies. The results also showed that students gaining high grades both anticipated the importance of, and then engaged more frequently in, two-way communications with both students and instructors whereas students with lower grades placed a relatively higher reliance upon passive interactions such as the pre-lab briefing, the laboratory manual and internet sources. Finally, recommendations are offered to curriculum designers, instructors and students based on the overall findings of the study.

    更新日期:2018-07-12
  • Using student-generated animations: the challenge of dynamic chemical models in states of matter and the invisibility of the particles
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-22
    Zeynep Yaseen

    This research investigates the use of student-generated animations in the teaching and learning of chemistry. Previous research has identified the potential for animations to contribute to student learning in science. In particular, animations have the capacity to represent the dynamic process and motions that may be inherent in some chemical concepts. This study focuses on animations that students produced with the support of their teacher and fellow students. The participants in the study were Year 11 science students and their science teacher. The teaching intervention included training the students in the use of animation software, followed by the students working in groups to create animations representing their conceptions of solid, liquid and gaseous states of matter, watching expert animations and classroom discussions. Students were supported by their teacher and encouraged to discuss ideas as they constructed their animations. Data collection included pre- and post-tests, classroom observation, video recording of lessons, collection of artefacts (the students’ animations, expert animations) and interviews with the teacher and students. Use of the student-generated animations created an opportunity to represent and discuss conceptions of the states of matter, including dynamic elements of their conceptualization. The teacher's scaffolding of the groups during the creation of their animations helped students to accurately represent their conceptions. In their analysis of the various animations, students identified differences and similarities among their animations. Data from pre-/post-tests, observations and interviews indicate that the students improved their understanding of states of matter through the teaching/learning process that occurred during the intervention.

    更新日期:2018-07-08
  • Structuring learning processes by ladders of learning: results from an implementation study
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-04
    Helena van Vorst

    This paper introduces Ladders of Learning (LLs) as a tool for structuring learning content and the teaching process in a transparent way for students. Learning material for a LL for Bohr's atomic model was developed by cooperation between chemistry teachers and university researchers and implemented in grade-eight chemistry classes. For evaluating the effectiveness of LLs, a mixed method research study was conducted. In a quantitative pre–post study, students’ cognitive and affective outcomes were investigated by questionnaires and compared to the results of a control group. In addition, semi-structured interviews were conducted to analyse students’ views on the LL. The results of the quantitative data analysis showed positive effects of the LL on students’ learning achievement and their interest in chemistry. The results from the qualitative data analysis confirmed these positive findings. However, students’ feedback indicated differences between the views of high-performing students and students with a lower performance in chemistry. Overall, the results of the study emphasize the relevance of structuring as a variable of teaching quality.

    更新日期:2018-07-05
  • The challenges of learning and teaching chemical bonding at different school levels using electrostatic interactions instead of the octet rule as a teaching model
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-21
    Jarkko Joki, Maija Aksela

    Teaching chemical bonding using the octet rule as an explanatory principle is problematic in many ways. The aim of this case study is to understand the learning and teaching of chemical bonding using a research-informed teaching model in which chemical bonding is introduced as an electrostatic phenomenon. The study posed two main questions: (i) how does a student's understanding of chemical bonding evolve from lower- to upper-secondary school when an electrostatic model of chemical bonding was used at the lower-secondary level? (ii) How does the teaching of octets/full shells at the upper-secondary level affect students’ understanding? The same students were interviewed after lower-secondary school and again during their first year at upper-secondary school. Their upper-level chemistry teachers were also interviewed. The interview data were analysed using the grounded theory method. The findings showed that the students’ earlier proper understanding of the electrostatic-interactions model at the lower-secondary level did not prevent the later development of less-canonical thinking. Teachers’ pedagogical content knowledge (PCK) of the explanatory principles of chemical bonding and how to use explanations in science education needs to be promoted in both pre-service teacher education and during in-service training.

    更新日期:2018-07-04
  • Meeting important educational goals for chemistry through service-learning
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-20
    Joyce D. Sewry, Sharli A. Paphitis

    This paper describes a service-learning course in Chemistry Honours at Rhodes University in South Africa. Students visit two schools in different settings, where they present a lecture-demonstration, entitled ‘A Pollutant's Tale’, and two hands-on experiments to school learners. The students are assessed on their learnings as seen through their own reflections on the activities in reflective journals. The reflections from 27 students over four years of the course were analysed to investigate to what extent the educational goals of the course were being met. Six broad themes emerged from student reflections: (1) social awareness; (2) civic responsibility; (3) challenging beliefs; (4) enhanced understanding of science communication and demonstration skills; (5) personal growth; and, (6) evaluating the service-learning experience. In our discussion of these themes, we suggest that through service-learning, students have learnt to do things differently in Chemistry: they have learnt about society beyond the laboratory and beyond their previous life-experiences. Importantly, the students have undergone personal development and picked up critical skills which they will need when traversing life and its challenges – such as, working with and learning from diverse groups of people, teamwork and learning to cope in stressful situations. The paper will be of particular interest to those who are involved in chemistry teaching in both schools and higher education institutions, as well as those interested in service-learning as a pedagogical tool, community and civic engagement and the development of transferable skills in chemistry students.

    更新日期:2018-07-04
  • Organic chemistry students’ interpretations of the surface features of reaction coordinate diagrams
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-09
    Maia Popova, Stacey Lowery Bretz

    Organic chemistry students struggle with understanding the energetics of chemical reactions. Reaction coordinate diagrams are one tool that is widely used in organic chemistry classrooms to assist students with visualizing and explaining the energy changes that take place throughout a reaction. Thirty-six students enrolled in organic chemistry II participated in a qualitative study that used semi-structured interviews to investigate the extent to which students meaningfully extract and integrate information encoded in reaction coordinate diagrams. Results show that students have difficulties explaining the meanings of surface features such as peaks, valleys, peak height, and peak width. Analysis of students’ explanations resulted in four themes that describe students’ challenges with correctly interpreting the features of reaction coordinate diagrams. Students conflated transition states and intermediates, despite being able to recite definitions. Students described the chemical species encoded at points along the x-axis of the reaction coordinate diagrams, while largely ignoring the energies of the species encoded along the y-axis. Implications for teaching organic chemistry are discussed.

    更新日期:2018-07-04
  • The influence of a design-based elective STEM course on pre-service chemistry teachers’ content knowledge, STEM conceptions, and engineering views
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-04
    Sevgi Aydin-Gunbatar, Aysegul Tarkin-Celikkiran, Elif Selcan Kutucu, Betul Ekiz-Kiran

    In this study, we sought to examine the influence of a 12 week design-based elective Science, Technology, Engineering, and Mathematics (STEM) course on pre-service chemistry teachers’ content knowledge, STEM conceptions, and engineering and engineering design views. To attain the goals determined, we utilized five STEM activities starting with a daily-life problem and an iterative engineering design process to solve the problem. A chemistry test with 11 two-tier items, and interviews focusing on STEM and engineering conceptions were administered at the beginning and at the end of the course. Moreover, a reflection paper was collected after each activity. Eight junior pre-service chemistry teachers participated in the study voluntarily. Deductive and inductive data analyses were used to investigate the influence of the course on participants’ content knowledge, STEM conceptions, and engineering and engineering design views. The results revealed that the design-based STEM course helped pre-service teachers deepen their content knowledge. Additionally, most of the participants defined integrated STEM education as an acronym (n = 6) and very few mentioned the interdisciplinary dimension of STEM education superficially at the beginning (n = 3). At the end, they mentioned interdisciplinary nature as connecting at least two dimensions of STEM, and they emphasized engaging in real-world problems, designing a product or process and inquiry-based and/or problem-based learning. Regarding engineering and engineering design views, a similar development was observed. Although their views were undeveloped or underdeveloped at the beginning, they enriched their views and mentioned defining criteria, creativity and integration to science and mathematics that are characteristics of engineering and design processes. Implications for including STEM courses in pre-service teacher education programs were provided.

    更新日期:2018-07-04
  • Chemistry topics posing incommensurate difficulty to students with low math aptitude scores
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-05-28
    Vanessa R. Ralph, Scott E. Lewis

    The identification of students at risk for academic failure in undergraduate chemistry courses has been heavily addressed in the literature. Arguably one of the strongest and most well-supported predictors of undergraduate success in chemistry is the mathematics portion of the SAT (SAT-M), a college-entrance, standardized test administered by the College Board. While students scoring in the bottom quartile of the SAT-M (herein referred to as at-risk) perform significantly worse on first-semester chemistry assessments, little is known of the topics on which these students differentially struggle. The purpose of this study is to provide insight as to which first-semester chemistry topics present an incommensurate challenge to at-risk students. Students were identified as either at-risk or not at-risk via SAT-M scores. Students’ assessment responses were collected across four semesters of first-semester chemistry courses at a large, public university (N = 5636). At-risk students struggled consistently across all topics but disproportionately with mole concept and stoichiometry. Analyzing the trend in topics suggests that the struggles of at-risk students are not entirely attributable to topics that rely heavily on algorithms or algebraic math. Moreso, at-risk students found to have performed well on mole concept and stoichiometry went on to perform similarly as their not at-risk peers. The results support an instructional emphasis on these topics with reviewed literature offering promising, practical options to better serve at-risk students and broaden representation in the sciences.

    更新日期:2018-07-04
  • Student-centred active learning approaches to teaching quantum chemistry and spectroscopy: quantitative results from a two-year action research study
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-05-28
    Lauri Partanen

    In this article, I propose a student-centred approach to teaching quantum chemistry and spectroscopy at the bachelor-level that extends active learning principles outside course lectures. The aim is to elucidate what type of methodology is most appropriate and efficient for this context and student population, and how this incorporation of active learning elements impacts learning. Three quantitative learning indicators are used to measure the effectiveness of the proposed approach, including exercise points obtained by the students, exam results, and the results of a conceptual inventory administered both at the beginning and the end of the course. The proposed model resulted in substantial improvement in learning outcomes compared to a previous class where active learning elements were confined mostly to the course lectures and a traditionally taught class. The model can be generalised to any subject where both quantitative and qualitative understanding is required. Thus, in addition to providing further support for the effectiveness of active learning approaches in science, this study shows the benefits of applying these approaches to exercises and other course tasks besides lectures.

    更新日期:2018-07-04
  • The effect of motivation on the choice of chemistry in secondary schools: adaptation and validation of the Science Motivation Questionnaire II to Spanish students
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-05-28
    Diego Ardura, Alberto Pérez-Bitrián

    The present study aims to analyse the effect of motivational variables and previous academic achievement on students’ future choice of chemistry once this subject becomes optional in the educational system. Toward this goal, the translation and adaptation of the Science Motivation Questionnaire II (SMQII) has been undertaken in our investigation to measure students’ motivation towards physics and chemistry. The sample comprised 1060 secondary school Spanish students divided into two groups: 695 students who chose the subject when it became optional for the first time and 365 who decided to leave it. Factor analysis confirmed the original structure of latent variables in our sample, providing validity for this adaptation to a new language and context. A segmentation analysis confirmed that career motivation was the best predictor of students’ retention in physics and chemistry before previous academic achievement and the rest of the motivational variables. Although significant gender differences were found in self-efficacy and self-determination, these seem not to be relevant in students’ choice.

    更新日期:2018-07-04
  • A new approach to supplementary instruction narrows achievement and affect gaps for underrepresented minorities, first-generation students, and women
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-05-23
    Cynthia A. Stanich, Michael A. Pelch, Elli J. Theobald, Scott Freeman

    To help students who traditionally underperform in general chemistry, we created a supplementary instruction (SI) course and called it the STEM-Dawgs Workshops. These workshops are an extension of the Peer-led Team Learning (PLTL) SI. In addition to peer-facilitated problem-solving, we incorporated two components inspired by learning sciences: (1) training in research-based study skills, and (2) evidence-based interventions targeting psychological and emotional support. Here we use an explanatory mixed methods approach to measure the impact of the STEM-Dawgs Workshops, with a focus on four sub-populations that are historically underrepresented in Chemistry: underrepresented minorities, females, low-income students, and first-generation students. Specifically, we compared three groups of students in the same General Chemistry course: students in general chemistry and not the workshops (“Gen Chem students”), students in the workshops (“STEM-Dawgs”), and students who volunteered for the workshops but did not get in (“Volunteers”). We tested hypotheses with regression models and conducted a series of focus group interviews with STEM-Dawgs. Compared to the Gen Chem population, the STEM-Dawg and Volunteer populations were enriched with students in all four under-represented sub-populations. Compared to Volunteers, STEM-Dawgs had increased exam scores, sense of belonging, perception of relevance, self-efficacy, and emotional satisfaction about chemistry. URM STEM-Dawgs had lower failure rates, and exam score achievement gaps that impacted first-generation and female Gen Chem students were eliminated in the STEM-Dawg population. Finally, female STEM-Dawgs had an increased sense of belonging and higher emotional satisfaction about chemistry than women Volunteers. Focus groups suggested that successes came in part from the supportive peer-learning environment and the relationships with peer facilitators. Together, our results indicate that this supplementary instruction model can raise achievement and improve affect for students who are underrepresented in chemistry.

    更新日期:2018-07-04
  • Undergraduate chemistry students’ misconceptions about reaction coordinate diagrams
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-05-21
    Roshan Lamichhane, Cathrine Reck, Adam V. Maltese

    Misconceptions are the “the old, the bad, and the ugly” prior knowledge, ideas or conceptions that the learners have that hinder their further learning in science. Several types of misconceptions that undergraduate students hold about reaction coordinate diagrams (from here on we use the term “reaction coordinate diagrams” and “energy diagrams” interchangeably) are described herein. The rationale of 223 students were coded based on their responses to a multiple-choice question on the topic, and interviews (n = 10) were used to delve deeper into the students’ knowledge structures. The results of the open coding of the rationale and the interviews were used in developing an instrument which was administered to 57 students. In this paper, we present the assessment instrument and the alternate conceptions that students have regarding energy diagrams that have not been reported in the literature yet. Implications for instructional approaches particular to the energy diagram topic are discussed.

    更新日期:2018-07-04
  • Investigation of the role of writing-to-learn in promoting student understanding of light–matter interactions
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-05-10
    Alena Moon, Eleni Zotos, Solaire Finkenstaedt-Quinn, Anne Ruggles Gere, Ginger Shultz

    Fundamental quantum chemistry concepts—quantization of energy, electronic structure, and light–matter interaction—are essential for understanding chemistry and spectroscopy, an important tool for studying molecules. However, very few studies have investigated how students learn and understand these concepts or how their learning can be supported. Drawing on the capacity of writing to support learning of difficult concepts, we designed an intervention that targeted quantum concepts in the context of the use of spectroscopy for identifying chemical composition of the Orion Nebula. A quasi-experimental design with a pre-post assessment on a control and treatment group was used to identify the gains associated with completing the WTL activity. Results from a three-tiered assessment show that WTL students significantly improved in their explanations of the concept of spectroscopic transitions and their overall confidence in their understanding. Analysis of their writing, follow-up interviews, and feedback served to explain the changes observed on the pre-post assessment.

    更新日期:2018-07-04
  • The effect of concept maps, as an individual learning tool, on the success of learning the concepts related to gravimetric analysis
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-05-03
    N. Turan-Oluk, G. Ekmekci

    This study aims to conduct a detailed investigation on the effect the use of concept mapping, as an individual learning tool, has on students’ success in learning the concept of gravimetric analysis. This study applies a case study research design to quantitatively examine the effect of the use of concept mapping and to conduct a detailed qualitative investigation of the participants’ opinions about its use. In this study, the concept maps were used both as a data collection tool [Select and fill in the nodes (SAFIN); Select and fill in the lines (SAFIL); Create and fill in the lines (CAFIL); Select and fill in the nodes&lines (SAFIN&L)] and as an individual learning tool. For data triangulation, students’ opinions on the concept mapping technique, as an individual learning tool for understanding gravimetric analysis, were also taken. Results from the study showed that there were significant differences between the pre- and post-test scores on all the tests (four types of fill-in-the-blank concept maps and a concept test) in favor of the post-test scores. In other words, the use of the concept map resulted in an increase in the success of the students. Furthermore, the participants expressed very positive opinions about the concept maps as an individual learning tool, both on the attitude scale and in their written opinions, declaring that it has a definite boosting effect on successfully learning a concept.

    更新日期:2018-07-04
  • Upper-division chemistry students’ navigation and use of quantum chemical models
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-04-24
    Marc N. Muniz, Cassidy Crickmore, Joshua Kirsch, Jordan P. Beck

    Chemical processes can be fully explained only by employing quantum mechanical models. These models are abstract and require navigation of a variety of cognitively taxing representations. Published research about how students use quantum mechanical models at the upper-division level is sparse. Through a mixed-methods study involving think-aloud interviews, a novel rating task, and an existing concept inventory, our work aims to fill this gap in the literature and begin the process of characterizing learning of quantum chemistry in upper-division courses. The major findings are that upper-division students tend to conflate models and model components. Students, unlike experts, focus on surface features. Our data indicates two specific surface features: lexical features and a “complex equals better” heuristic. Finally, there is no correlation in our data between a student's facility with navigating models and their conceptual understanding of quantum chemistry as a whole. We analyze the data through the lens of a framework which enables us to cast model conflation as a problem of ontology.

    更新日期:2018-07-04
  • Organic chemistry students’ challenges with coherence formation between reactions and reaction coordinate diagrams
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-04-16
    Maia Popova, Stacey Lowery Bretz

    The purpose of this study was to elucidate and describe students’ thinking when making connections between substitution and elimination reactions and their corresponding reaction coordinate diagrams. Thirty-six students enrolled in organic chemistry II participated in individual, semi-structured interviews. Three major themes were identified that characterize students’ difficulties with integrating the information from the reactions and the reaction coordinate diagrams: incorrect ideas about the meanings of the reaction coordinate diagrams’ features, errors when examining reaction mechanisms, and an inability to assess the relative energies of reaction species. These findings suggest that students need support for coherence formation between reactions and reaction coordinate diagrams. Implications for teaching to address these student difficulties are suggested.

    更新日期:2018-07-04
  • Can language focussed activities improve understanding of chemical language in non-traditional students?
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-04-16
    Simon William Rees, Vanessa Kind, Douglas Newton

    Students commonly find the language of chemistry challenging and a barrier to developing understanding. This study investigated developments in chemical language understanding by a group of non-traditional students over the duration of a one year pre-undergraduate (Foundation) course at a UK university. The chemistry course was designed to include a range of literacy based strategies to promote understanding including: word games, corpus linguistics, word roots and origins, and reading comprehension. Understanding of chemical language was assessed with a chemical language assessment (CLA) that was administered three times during the year. The CLA assessed understanding of scientific affixes, symbolic language, non-technical words, technical words, fundamental words and topic-specific vocabulary. Results indicate that chemical language understanding improved over the duration of the study with moderate to large effect sizes. Students who scored low in the initial CLA (below 40%) improved but their scores remained lower than the rest of the students at the end of the year. The topic-specific and technical sections scored low for all students at the start of the year and remained the lowest at the end of the year. Examples of symbolic and non-technical language remained problematic for some students at the end of the year. There was a correlation (r = 0.53) between initial CLA score and final exam outcomes although some students with low initial CLA scores did perform well in the final exam. These findings are discussed in relation to the role of literacy based strategies in chemistry teaching.

    更新日期:2018-07-04
  • Improving general chemistry performance through a growth mindset intervention: selective effects on underrepresented minorities
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-04-13
    Angela Fink, Michael J. Cahill, Mark A. McDaniel, Arielle Hoffman, Regina F. Frey

    Women and minorities remain underrepresented in chemistry bachelor's degree attainment in the United States, despite efforts to improve their early chemistry achievement through supplemental academic programs and active-learning approaches. We propose an additional strategy for addressing these disparities: course-based, social-psychological interventions. For example, growth-mindset interventions are designed to support students during challenging academic transitions by encouraging them to view intelligence as a flexible characteristic that can be developed through practice, rather than a fixed ability. Previous research has shown that such interventions can improve the overall performance and persistence of college students, particularly those who belong to underrepresented groups. We report a random-assignment classroom experiment, which implemented a chemistry-specific growth-mindset intervention among first-year college students enrolled in General Chemistry 1. Performance results revealed an achievement gap between underrepresented minority and white students in the control group, but no sex-based gap. Critically, after adjusting for variation in academic preparation, the mindset intervention eliminated this racial-achievement gap. Qualitative analysis of students’ written reflections from the intervention shed light on their experiences of the mindset and control treatments, deepening our understanding of mindset effects. We integrate these results with the mindset and chemical education literatures and discuss the implications for educators seeking to support underrepresented students in their own classrooms.

    更新日期:2018-07-04
  • Views of German chemistry teachers on creativity in chemistry classes and in general
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-04-13
    Luzie Semmler, Verena Pietzner

    Creativity has become an increasingly important competence in today's rapidly changing times, because economics and industries depend on innovation. Creativity is therefore a requirement for school graduates, especially for the ones who strive to pursue a technical or scientific career. But creativity has not been integrated into the curricula of STEM subjects in many European countries like Germany. To successfully integrate it in the classroom, it is important to investigate teachers' views and conceptions on creativity, because they have an influence on teaching and lesson planning. This is the purpose of this study. To investigate the views and conceptions, a research instrument especially designed for this study is used. It includes the creation of two concept maps and filling out a questionnaire. The study was carried out using fifteen German chemistry teachers. The evaluation of the data was made qualitatively as well as quantitatively. It has revealed that almost all of the teachers in this study had a positive attitude towards creativity and had experiences referring to integrating creativity into their own chemistry lessons. But not all of these experiences are good ones and there were some aspects with regard to creativity in general, where uncertainties could be identified.

    更新日期:2018-07-04
  • Can cognitive structure outcomes reveal cognitive styles? A study on the relationship between cognitive styles and cognitive structure outcomes on the subject of chemical kinetics
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-04-06
    Elif Atabek-Yigit

    Determination of the relationship between individuals’ cognitive styles and cognitive structure outcomes was the main aim of this study. Sixty-six participants were enrolled in the study and their cognitive styles were determined by using the Hidden Figure Test (for their field dependent/independent dimension of cognitive style) and the Convergent/Divergent Test (for their convergence/divergence dimension of cognitive style). An open-ended questionnaire was formed in order to determine participants’ cognitive structure outcomes. The study topic was chosen as chemical kinetics since it is one of the most difficult topics in chemistry according to many students and also there is limited study in the literature on this topic. Key concepts about chemical kinetics were selected and given to the participants and they were asked to write a text by using the given concepts. A flow map technique was used to reveal participants’ cognitive structure outcomes. According to the findings of this study, it can be said that field independent participants tended to be divergent thinkers while field dependents tended to be convergent thinkers. Also, strong positive relationships between participants’ field dependency/independency and some cognitive structure outcomes (extent and richness) were found. That is, field independents tended to have more extended and richer cognitive structure outcomes. However, the convergence/divergence dimension of cognitive style did not show any correlation with cognitive structure outcomes.

    更新日期:2018-07-04
  • Teaching assistants' topic-specific pedagogical content knowledge in 1H NMR spectroscopy
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-04-03
    M. C. Connor, G. V. Shultz

    Nuclear magnetic resonance (NMR) spectroscopy is an essential analytical tool in chemistry, and the technique is routinely included as a topic across the undergraduate chemistry curriculum. As a result of NMR's importance, classroom instruction of this topic has received considerable attention in chemistry education research. However, little is known about instructors’ knowledge for teaching this topic. In order to better understand this knowledge, we investigated topic-specific pedagogical content knowledge in 1H NMR spectroscopy among 20 chemistry teaching assistants at a large Midwestern university in the United States. A questionnaire was developed to provide an inferential measure of content knowledge and topic-specific pedagogical content knowledge in 1H NMR spectroscopy for participants with a range of teaching experience. Data from the questionnaire were analyzed qualitatively and quantized using a rubric. The quantitative data were transformed using the Rasch model and statistically analyzed. Results from these analyses indicate that pedagogical content knowledge increased with teaching experience in 1H NMR spectroscopy, suggesting that knowledge for teaching this topic is developed through practice. Additionally, the development of pedagogical content knowledge was found to depend upon content knowledge required for specific NMR sub-topics and problems. This finding suggests that the ultimate “grain-size,” or domain-specificity, of pedagogical content knowledge may extend to the problem level. Results from this study have implications for how instructors may cultivate knowledge for teaching NMR spectroscopy, as well as for how pedagogical content knowledge may be more effectively incorporated into instructor training programs.

    更新日期:2018-07-04
  • The effect of peer-led team learning on undergraduate engineering students’ conceptual understanding, state anxiety, and social anxiety
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-03-29
    E. N. Eren-Sisman, C. Cigdemoglu, O. Geban

    This study aims to compare the effectiveness of a Peer-Led Team Learning (PLTL) model with that of traditional college instruction (TCI) in enhancing the conceptual understanding and reducing both the state anxiety and social anxiety of undergraduate engineering students in a general chemistry course in a quasi-experimental design. 128 engineering students taking the course participated in the study. One of the course sections was randomly assigned to the experimental group and the other section was assigned to the control group. Both sections were taught by the same instructor. The control group was instructed using traditional college instruction, while the experimental group was instructed using the PLTL model. Throughout this study, six peer-led chemistry workshops and leader training sessions were performed simultaneously. The General Chemistry Concept Test, the State–Trait Anxiety Inventory, and the Social Anxiety Questionnaire for Adults were administered before and after the treatment to both groups. One-way Multivariate Analysis of Covariance (MANCOVA) indicated that after controlling students’ university entrance scores, trait anxiety scores and pre-test scores of both the General Chemistry Concept Test and state anxiety, the PLTL model was more effective in improving the conceptual understanding and reducing the situational anxiety of engineering students in undergraduate general chemistry. However, it was not so effective in lessening their social anxiety when compared to traditional college instruction.

    更新日期:2018-07-04
  • Using knowledge space theory to compare expected and real knowledge spaces in learning stoichiometry
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-03-28
    M. T. Segedinac, S. Horvat, D. D. Rodić, T. N. Rončević, G. Savić

    This paper proposes a novel application of knowledge space theory for identifying discrepancies between the knowledge structure that experts expect students to have and the real knowledge structure that students demonstrate on tests. The proposed approach combines two methods of constructing knowledge spaces. The expected knowledge space is constructed by analysing the problem-solving process, while the real knowledge space is identified by applying a data-analytic method. These two knowledge spaces are compared for graph difference and the discrepancies between the two are analysed. In this paper, the proposed approach is applied to the domain of stoichiometry. Although there was a decent agreement between expected and real knowledge spaces, a number of relations that were not present in the expected one appeared in the real knowledge space. The obtained results led to a general conclusion for teaching stoichiometry and pointed to some potential improvements in the existing methods for evaluating cognitive complexity.

    更新日期:2018-07-04
  • An examination of preservice elementary teachers’ representations about chemistry in an intertextuality- and modeling-based course
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-03-20
    Minjung Ryu, Jocelyn Elizabeth Nardo, Meng Yang Matthew Wu

    The chemistry education aspect of elementary teacher education faces a unique set of challenges. On one hand, preservice and in-service elementary teachers tend to not like chemistry and have negative feelings toward chemistry. On the other hand, learning chemistry requires reasoning about natural phenomena from the submicroscopic perspective that deals with the properties and behaviors of unobservable particles. The present study addresses these challenges in chemistry education for preservice elementary teachers (PSETs) by designing a chemistry curriculum that improves the relevance of chemistry learning to students via intertextuality and modeling practices. An analysis of chemistry representations that PSETs generated before and after taking the designed chemistry course demonstrates that they initially perceived chemistry as vivid chemical changes occurring in lab spaces or a discipline related to atoms while failing to provide connections between the chemical reactions and atoms. After taking the course, many students came to see doing chemistry as epistemic practices that construct submicroscopic explanations for observable phenomena and its relevance to everyday lives such as food, car emissions, and their local surroundings. They also came to recognize various epistemic roles that people play in doing chemistry. We provide important implications for engaging PSETs in chemical reasoning and designing chemistry curricula that are more approachable and build on learners’ knowledge resources.

    更新日期:2018-07-04
  • Development and use of a construct map framework to support teaching and assessment of noncovalent interactions in a biochemical context
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-07-02
    Jennifer Loertscher, Jennifer E. Lewis, Allison M. Mercer, Vicky Minderhout

    Most chemistry educators agree that deep understanding of the nature of noncovalent interactions is essential for learning in chemistry. Yet decades of research have shown that students have persistent incorrect ideas about these interactions. We have worked in collaboration with a community of chemistry, biology, and biochemistry educators to develop a construct map to guide development of instructional and assessment resources related to the physical basis of noncovalent interactions in a biochemical context. This map was devised using data about student learning and expert perspectives on noncovalent interactions, resulting in a framework that provides a detailed roadmap for teaching and learning related to this essential concept. Here we describe the development of the construct map and our use of it to reform our biochemistry teaching practice. Because biochemistry relies on application of concepts learned in prerequisite courses, this construct map could be useful for wide range of courses including general chemistry, introductory biology, organic chemistry, and biochemistry.

    更新日期:2018-07-02
  • Development and dissemination of a teaching learning sequence on nanoscience and nanotechnology in a context of communities of learners
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-29
    Dimitris Stavrou, Emily Michailidi, Giannis Sgouros

    Introducing Nanoscience and Nanotechnology (NST) topics into school science curricula is considered useful for an in-depth understanding of the content, processes and nature of science and technology, and also for negotiating the social aspects of science. This study examines (a) the development of an inquiry-based Teaching–Learning Sequence (TLS) on NST topics, which incorporates socio-scientific issues and out-of-school learning environments and (b) the dissemination of the developed TLS through the training of further teachers. In both cases, a participatory design, in particular Communities of Learners (CoLs), was established, consisting of teachers, science researchers, science education researchers and science museum experts. As a theoretical framework for the TLS development, the Model of Educational Reconstruction is used. The qualitative analysis of the obtained data highlights that teachers’ interactions with colleagues in the CoL on issues regarding the educational reconstruction of the different aspects of the TLS impact the process of its development. Regarding the dissemination of the TLS, the findings indicate that teachers modified several elements of the TLS and particularly the included activities, influenced by their mentors’ prior experience and their own rich contextual knowledge. Finally, guidelines for the development and dissemination of a TLS are discussed.

    更新日期:2018-06-30
  • Students’ perceptions of common practices, including some academically dishonest practices, in the undergraduate general chemistry classroom laboratory
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-22
    K. Christopher Smith, Adrian Sepulveda

    In this study 635 general chemistry I and general chemistry II students completed a 40-item Likert-scale survey on their opinions of various practices, including some academically dishonest practices, that might occur in the general chemistry laboratory. The practices surveyed were focused on areas including preparation before coming to the laboratory, getting help with the pre-lab assignments, various decisions made by the teaching assistant or laboratory instructor, getting help with the calculations and questions required by the laboratory report, and various methods of obtaining data in the laboratory. An exploratory factor analysis of the results was conducted to identify the underlying factors in the survey, and the scores of the general chemistry I and general chemistry II students along these factors were compared. The findings were generally consistent with results in the literature, but also provided implications for students’ enculturation into chemistry and science as they progressed through their general chemistry coursework.

    更新日期:2018-06-28
  • Resolving the complexity of organic chemistry students' reasoning through the lens of a mechanistic framework
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-20
    I. Caspari, D. Kranz, N. Graulich

    Research in organic chemistry education has revealed that students often rely on rote memorization when learning mechanisms. Not much is known about student productive resources for causal reasoning. To investigate incipient stages of student causal reasoning about single mechanistic steps of organic reactions, we developed a theoretical framework for this type of mechanistic reasoning. Inspired by mechanistic approaches from philosophy of science, primarily philosophy of organic chemistry, the framework divides reasoning about mechanisms into structural and energetic accounts as well as static and dynamic approaches to change. In qualitative interviews, undergraduate organic chemistry students were asked to think aloud about the relative activation energies of contrasting cases, i.e. two different reactants undergoing a leaving group departure step. The analysis of students’ reasoning demonstrated the applicability of the framework and expanded the framework by different levels of complexity of relations that students constructed between differences of the molecules and changes that occur in a leaving group departure. We further analyzed how students’ certainty about the relevance of their reasoning for a claim about activation energy corresponded to their static and dynamic approaches to change and how students’ success corresponded to the complexity of relations that they constructed. Our findings support the necessity for clear communication of and stronger emphasis on the fundamental basis of elementary steps in organic chemistry. Implications for teaching the structure of mechanistic reasoning in organic chemistry and for the design of mechanism tasks are discussed.

    更新日期:2018-06-28
  • Student progression on chemical symbol representation abilities at different grade levels (Grades 10–12) across gender
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-06-07
    Shaohui Chi, Zuhao Wang, Ma Luo, Yuqin Yang, Min Huang

    Chemical symbol representation is used extensively in chemistry classrooms; however, due to its abstract nature, many students struggle with learning and effectively utilizing these symbolic representations, which can lead to ongoing failure in subsequent chemistry learning. Taking the perspective of learning progressions, this study identifies how students’ abilities in chemical symbol representation progress at different grade levels (Grade 10–12), across the genders. A sample of 713 students—254 tenth graders, 262 eleventh graders and 197 twelfth graders—was selected from three senior secondary schools located in Jiangsu, China. A measurement instrument developed in a former study was used to measure students’ chemical symbol representation abilities and students’ raw scores were converted into Rasch scale scores, allowing for direct comparisons of students of different grades. The results of chi-squared tests and analysis of variance (ANOVA) indicated that chemical symbol representation abilities are affected by statistically significant gender and grade effects. Students from higher grades performed better than students from lower grades, and generally, male students obtained a higher mean score than did their female peers. The findings also revealed that there was a statistically significant interaction effect between gender and grade. While male students started out with a much higher mean score in Grade 10, by Grade 11 there was not much of a difference between male and female students’ mean scores, and female students’ mean score was higher than male students’ mean score by Grade 12.

    更新日期:2018-06-22
  • Epistemic games in substance characterization
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-05-28
    Hannah Sevian, Steven Couture

    Problem solving is lauded as beneficial, but students do not all learn well by solving problems. Using the resources framework, Tuminaro J., and Redish E. F., (2007), Elements of a cognitive model of physics problem solving: Epistemic games, Physical Review Special Topics-Physics Education Research, 3(2), 020101 suggested that, for physics students, this puzzle may be partially understood by paying attention to underlying epistemological assumptions that constrain the approaches students take to solving problems while working on them. They developed an approach to characterizing epistemic games, which are context-sensitive knowledge elements concerning the nature of knowledge, knowing and learning. As there is evidence that context-activated knowledge influences problem solving by students in chemistry, we explored identifying epistemic games in students’ problem solving in chemistry. We interviewed 52 students spanning six courses from grade 8 through fourth-year university, each solving 4 problems. Using 16 contexts with substance characterization problems, we identified 5 epistemic games with ontological and structural stability that exist in two larger epistemological frames. All of these epistemic games are present at all educational levels, but some appear to grow in across educational levels as others recede. Some games also take lesser and greater precedence depending on the problem and the chemistry course in which students are enrolled and the context of the problem. We analyze these results through a frame of learning progressions, paying attention to students’ ideas and how these ideas are contextualized. Based on this analysis, we propose teaching acts that instructors may use to leverage the natural progressions of how students appear to grow in their capacity to solve problems.

    更新日期:2018-06-06
  • Analysing processes of conceptualization for students in lessons on substance from the emergence of conceptual profile zones
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-05-07
    Edenia Maria Ribeiro do Amaral, João Roberto Ratis Tenório da Silva, Jaqueline Dantas Sabino

    In this paper, we analyze the process of conceptualization experienced by students in Secondary School when involved in activities in a teaching and learning sequence on the concept of substance, considering the emergence of zones of the conceptual profile. The results point out that the approaches to different modes of thinking of substance enabled the teacher to discuss and confront ideas, leading students to construct or share meanings stabilized in a scientific view. The conceptual profile was an important tool to design activities by creating discursive contexts involving different modes of thinking about substance, which contributed to raising specific discussions involving historical, scientific and social contexts to understand senses and meanings for substances.

    更新日期:2018-05-24
  • Investigating the viability of a competency-based, qualitative laboratory assessment model in first-year undergraduate chemistry
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-03-20
    Reyne Pullen, Stuart C. Thickett, Alex C. Bissember

    In chemistry curricula, both the role of the laboratory program and the method of assessment used are subject to scrutiny and debate. The ability to identify clearly defined competencies for the chemistry laboratory program is crucial, given the numerous other disciplines that rely on foundation-level chemistry knowledge and practical skills. In this report, we describe the design, implementation, results, and feedback obtained on a competency-based assessment model recently introduced into the first-year laboratory program at an Australian university. Previously, this laboratory program was assessed via a quantitative, criterion-referenced assessment model. At the core of this new model was a set of competency criteria relating to skills-acquisition, chemical knowledge and application of principles, safety in the laboratory, as well as professionalism and teamwork. By design, these criteria were aligned with the learning outcomes of the course and the degree itself, as well as local accrediting bodies. Qualitative and quantitative feedback from students (and staff) obtained before and after the implementation of this new model suggested this approach provided an enhanced learning experience enabling a greater focus on the acquisition of fundamental laboratory skills and techniques.

    更新日期:2018-04-03
  • The characterization of cognitive processes involved in chemical kinetics using a blended processing framework
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-03-13
    Kinsey Bain, Jon-Marc G. Rodriguez, Alena Moon, Marcy H. Towns

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical kinetics. Using semi-structured interviews, participants were asked to make their reasoning and thinking explicit as they described provided equations and as they worked though chemical kinetics problems. Here we describe the results from our study, which included thirty-six general chemistry students, five physical chemistry students, and three chemical engineering students. Analysis and findings are framed in terms of blended processing, a theory from cognitive science that characterizes human knowledge integration. Themes emerged relating to contexts that were commonly discussed when blending occurred. Variation in the depth and directionality of blending was also observed and characterized. Results provide implications for supporting student problem solving and the modeling of chemical processes.

    更新日期:2018-04-03
  • A framework for understanding student nurses’ experience of chemistry as part of a health science course
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-03-05
    Kerrie Boddey, Kevin de Berg

    Twenty-seven first-year nursing students, divided across six focus groups formed on the basis of their past chemistry experience, were interviewed about their chemistry experience as a component of a Health Science unit. Information related to learning and academic performance was able to be established from student conversations resulting in three themes (and associated categories): Connectivity (curriculum, application, and social interaction); Reductivity (nature of chemistry, exposition, and control of learning); and Reflexivity (confidence, anxiety, and goal orientation). The framework proved useful in portraying relationships between themes for conversations related to tutorial sessions, prior knowledge, and chemistry in nursing. The focus groups were representative of the total cohort of students in terms of gender, age, working hours, academic performance, enjoyment level of chemistry, and the extent of the relevance of chemistry to nursing. Implications for chemistry educators, especially those supporting novices, are considered.

    更新日期:2018-04-03
  • Inquiry and industry inspired laboratories: the impact on students’ perceptions of skill development and engagements
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-03-02
    Stephen R. George-Williams, Jue T. Soo, Angela L. Ziebell, Christopher D. Thompson, Tina L. Overton

    Many examples exist in the chemical education literature of individual experiments, whole courses or even entire year levels that have been completely renewed under the tenets of context-based, inquiry-based or problem-based learning. The benefits of these changes are well documented and include higher student engagement, broader skill development and better perceived preparation for the workforce. However, no examples appear to have been reported in which an entire school's teaching laboratory programme has been significantly redesigned with these concepts in mind. Transforming Laboratory Learning (TLL) is a programme at Monash University that sought to incorporate industry inspired context-based, inquiry-based and problem-based learning into all the laboratory components of the School of Chemistry. One of the ways in which the effect of the programme was evaluated was through the use of an exit survey delivered to students at the completion of seven experiments that existed before the TLL programme as well as seven that were generated directly by the TLL programme. The survey consisted of 27 closed questions alongside three open questions. Overall, students found the new experiments more challenging but recognised that they were more contextualised and that they allowed students to make decisions. The students noted the lack of detailed guidance in the new laboratory manuals but raised the challenge, context and opportunity to undertake experimental design as reasons for enjoying the new experiments. Students' perceptions of their skill development shifted to reflect skills associated with experimental design when undertaking the more investigation driven experiments. These results are consistent with other literature and indicate the large scale potential success of the TLL programme, which is potentially developing graduates who are better prepared for the modern workforce.

    更新日期:2018-04-03
  • Developing communication confidence and professional identity in chemistry through international online collaborative learning
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-03-01
    Darlene Skagen, Brett McCollum, Layne Morsch, Brandon Shokoples

    The use of online collaborative assignments (OCAs) between two flipped organic chemistry classrooms, one in Canada and the other in the United States, was examined for impact on learners. The intervention was designed to support content mastery, aid in increasing students’ communication skills through chemistry drawing and verbalization, facilitate emergence of professional identity, and promote development of appreciation for chemistry as an international language. A mixed-methods approach consisting of interviews, student written reflections, and questionnaires was used to evaluate the impact of the OCAs. Students described their experience of the OCAs in terms of: chemistry communication confidence; engaged learning; chemistry learning; relationships; and professional identity.

    更新日期:2018-04-03
  • Improving the interest of high-school students toward chemistry by crime scene investigation
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-02-23
    A. Basso, C. Chiorri, F. Bracco, M. M. Carnasciali, M. Alloisio, M. Grotti

    Improving the interest of high-school students towards chemistry (and science in general) is one of the goals of the Italian Ministry of Education. To this aim, we designed a context-based activity that actively involved students in six different laboratory experiences interconnected by a case study of the murder of Miss Scarlet, from the famous game Clue. Key points of the activity were: the interest aroused by the subject of crime scene investigation; the direct involvement of the students in all stages of the work (from the realization of the experiments to the resolution of the case); the use of a multidisciplinary approach for addressing a complex scientific problem; the work in chemical laboratories with modern instrumentation; the team work and the supervision by young tutors. To verify the hypothesis that such a multidisciplinary activity could foster the interest for the discipline, an evaluation was performed using a self-report questionnaire designed to assess changes in the situational interest raised by the internship. It was found that the activity significantly increased interest and attitude toward chemistry, mainly for students with lower scores in pleasure for the study of chemistry, self-efficacy and self-concept in chemistry.

    更新日期:2018-04-03
  • Analysing the impact of a discussion-oriented curriculum on first-year general chemistry students' conceptions of relative acidity
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-02-19
    Lisa Shah, Christian A. Rodriguez, Monica Bartoli, Gregory T. Rushton

    Instructional strategies that support meaningful student learning of complex chemical topics are an important aspect of improving chemistry education. Adequately assessing the success of these approaches can be supported with the use of aligned instruments with established psychometrics. Here, we report the implementation and assessment of one such curriculum, Chemical Thinking, on first-year general chemistry students' conceptions of relative acidity using the recently-developed concept inventory, ACIDI. Our results reveal that, overall, students performed significantly better on ACIDI following instruction, with scores consistent with those previously reported for students who had completed one semester of organic chemistry. Students performed equally well on a delayed post-test administered ten weeks after final instruction, which suggests that instruction promoted a stable conceptual reprioritisation. Item analysis of ACIDI revealed that students generally made conceptual gains on items where inductive effects were the primary determinants of conjugate base stability and relative acidity. However, students overwhelmingly struggled on items where resonance was the primary determinant. Analysis of student–student arguments in active learning settings provided evidence for how the quality of student arguments impacted their conceptions. Overall, these findings suggest that students were able to avoid several superficial misconceptions cited in the literature about relative acidity, and that this topic, traditionally taught exclusively in organic chemistry, may be introduced earlier in the sequence of curricular topics. Implications for future studies on the role of argumentational aspects of student–student conversations and facilitation strategies in promoting or hindering meaningful learning are discussed.

    更新日期:2018-04-03
  • Fusing a reversed and informal learning scheme and space: student perceptions of active learning in physical chemistry
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-02-16
    Julie Donnelly, Florencio E. Hernández

    Physical chemistry students often have negative perceptions and low expectations for success in physical chemistry, attitudes that likely affect their performance in the course. Despite the results of several studies indicating increased positive perception of physical chemistry when active learning strategies are used, a recent survey of faculty in the U.S. revealed the continued prevalence of instructor-centered approaches in physical chemistry. In order to reveal a deeper understanding of student experiences in an active learning physical chemistry course, we present a phenomenological study of students’ perceptions of physical chemistry when the course is completely redesigned using active learning strategies. Using the flipped classroom, an active learning space, cooperative learning, and alternative assessments, we emphasized fundamental concepts and encouraged students to take responsibility for their learning. Based on open-ended surveys and interviews with students, we found that students struggled with the transition, but had some significant positive perceptions of the approach. This is in agreement with previous studies of physical chemistry courses in which cooperative learning was the focus. As part of a larger study of the effectiveness of this course redesign, we show how students perceive the effectiveness of these strategies and how they react to them. In addition, we discuss the implications of these findings for the active learning physical chemistry classroom.

    更新日期:2018-04-03
  • Explaining secondary school students’ attitudes towards chemistry in Chile
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-02-15
    L. H. Montes, R. A. Ferreira, C. Rodríguez

    Research into attitudes towards chemistry in Latin America and indeed towards science in general is very limited. The present study aimed to adapt and validate a shortened version of Bauer's Attitude toward the Subject of Chemistry Inventory version 2 (ASCIv2) for use in a Latin American context. It also explored attitudes towards chemistry of Chilean secondary school students, and assessed the effect of school type, year group, gender, and chemistry achievement on both cognitive and affective dimensions. The participants were 523 secondary school students from public, private subsidised, and private schools in Chile. Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were first carried out to validate ASCIv2. The results of CFA showed that ASCIv2 retained the two-factor structure and showed optimal model fit, but three items had to be removed from the original instrument. The research also showed that attitudes towards science were neither positive nor negative, a reality similar to that of other countries. The results of multivariate and univariate analyses of variance showed significant effects of year group and chemistry achievement on attitudes towards chemistry. No effects of school type, gender or interactions between factors were found. Follow-up analyses revealed that as students advance through school their attitudes decline, but that the higher their chemistry marks, the more positive their attitudes become. These findings are partially in line with previous data from other countries and are a starting point for more research into attitudes towards chemistry in Latin America.

    更新日期:2018-04-03
  • Characterisation of teacher professional knowledge and skill through content representations from tertiary chemistry educators
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-02-15
    M. Schultz, G. A. Lawrie, C. H. Bailey, B. L. Dargaville

    An established tool for collating secondary teachers’ pedagogical content knowledge (Loughran's CoRe) has been adapted for use by tertiary educators. Chemistry lecturers with a range of levels of experience were invited to participate in workshops through which the tool was piloted, refined and applied. We now present this refined tool for the tertiary teaching community to consider adopting. The teaching approaches of over 80 workshop participants were collected using the tool in a broad survey of tertiary chemistry teaching strategies. Participation in the workshops led to a significant gain in personal PCK for some individuals. Analysis of responses received in the workshops revealed that the consensus model of secondary teacher professional knowledge and skill is also applicable to the tertiary level, and that the CoRe is a useful way to gain insight into the knowledge bases and topic-specific professional knowledge of tertiary chemistry teachers. The data were aggregated and coded inductively to distil the types of strategies commonly found to be useful for teaching particular tertiary chemistry topics. This resulted in collation of over 300 teaching strategies for 19 different chemistry topics, representing significant topic-specific professional knowledge of tertiary practitioners. To share and sustain this collection of teaching strategies, a website was built that is searchable by either chemistry topic or by type of teaching strategy, making it immediately useful to practitioners. Usage analytics data for the website confirm that many users have accessed the resource, showing that this is a practical way to transfer information between chemistry educators.

    更新日期:2018-04-03
  • The effect of teaching the entire academic year of high school chemistry utilizing abstract reasoning
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-02-07
    Michael F. Z. Page, Patrick Escott, Maritza Silva, Gregory A. Barding, Jr.

    This case study demonstrates the ability of high school chemistry students, with varying levels of math preparation, to experience learning-gains on state and district assessments as it relates to chemical reactions, thermodynamics, and kinetics. These advances were predicated on the use of a teaching style rooted in abstract reasoning. The methodology was presented to students and modeled by the instructor over an entire school year to reinforce key proportional relationships featured in the balanced chemical equation and related topics such as acids and bases, reaction rates, equilibrium, and conservation of matter. Despite the small sample size, there was a general increase in student success, indicated by a statistically significant difference between students receiving instruction rooted in concrete reasoning and students receiving instruction rich in abstract reasoning.

    更新日期:2018-04-03
  • Assessing assessment: in pursuit of meaningful learning
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-02-05
    Ilse Rootman-le Grange, Margaret A. L. Blackie

    The challenge of supporting the development of meaningful learning is prevalent in chemistry education research. One of the core activities used in the learning process is assessments. The aim of this paper is to illustrate how the semantics dimension of Legitimation Code Theory can be a helpful tool to critique the quality of assessments and reveal how this quality potentially contributes to meaningful learning. For this purpose we analysed an exam paper from an introductory chemistry module, using the semantics dimension as a framework. We discuss the tools that were designed for this analysis and how it was applied to reveal the weakness in this particular assessment. Suggestions for how this assessment can be improved is also discussed. This study illustrates how the semantics dimension can inform assessment practice and potentially contribute to the development of meaningful learning.

    更新日期:2018-04-03
  • Grade perceptions of students in chemistry coursework at all levels
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-02-02
    Jeffrey A. Webb, Andrew G. Karatjas

    Various reasons are attributed to poor student performance in physical science courses such as lack of motivation, lack of ability, and/or the overall difficulty of these courses. One overlooked reason is a lack of self-awareness as to preparation level. Through a study over a two-year period, students at all levels (freshman through M.S.) of a chemistry program were surveyed and asked to self-report predictions of their score on examinations. At all levels, strong evidence of the Kruger–Dunning effect was seen where higher performing students tended to underpredict their examination scores while the lowest performing students tended to grossly overpredict their scores.

    更新日期:2018-04-03
  • Career-related instruction promoting students’ career awareness and interest towards science learning
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-01-20
    Anssi Salonen, Sirpa Kärkkäinen, Tuula Keinonen

    The aim of this study was to investigate how career-related instruction implemented in secondary school chemistry education concerning water issues influences students’ career awareness and their interest towards science learning. This case study is part of a larger design-based research study for the EU-MultiCO project, which focuses on promoting students’ scientific career awareness and attractiveness by introducing them to career-based scenarios at the beginning of the instruction unit. The participants in this study were three eighth-grade classes with 46 students in total, and 2 science teachers. Data consisted of observations throughout the intervention and a questionnaire which the students took afterwards. Descriptive statistics taken from the questionnaire were used together with the content analysis of open questions and observation notes. The results reveal that the students acquired knowledge about science, science-related careers and working life skills and that they enjoyed studying chemistry and engaged in learning during the intervention. The students recognized the need for professionals and their responsibilities as well as the importance of water-related issues as global and local problems, but these issues were not personally important or valuable to students. The type of career-related instruction discussed in this paper can give guidelines for how to develop teaching to promote students’ science career awareness, trigger students’ interest and engage them in science learning.

    更新日期:2018-04-03
  • ‘What do you think the aims of doing a practical chemistry course are?’ A comparison of the views of students and teaching staff across three universities
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-01-19
    Stephen R. George-Williams, Angela L. Ziebell, Russell R. A. Kitson, Paolo Coppo, Christopher D. Thompson, Tina L. Overton

    The aims of teaching laboratories is an important and ever-evolving topic of discussion amongst teaching staff at teaching institutions. It is often assumed that both teaching staff and students are implicitly aware of these aims, although this is rarely tested or measured. This assumption can lead to mismatched beliefs between students and teaching staff and, if not corrected for, could lead to negative learning gains for students and become a source of frustration for teaching staff. In order to measure and identify this gap in a manner that could be readily generalised to other institutions, a single open question – ‘What do you think the aims of doing a practical chemistry course are?’ – was distributed to students and teaching staff at two Australian universities and one UK university. Qualitative analysis of the responses revealed that students and teaching staff held relatively narrow views of teaching laboratories, particularly focusing on aims more in line with expository experiences (e.g. development of practical skills or enhances understanding of theory). Whilst some differences were noted between students at the three institutions, the large amount of similarities in their responses indicated a fairly common perception of laboratory aims. Of the three groups, academics actually held the narrowest view of teaching laboratories, typically neglecting the preparation of students for the workforce or the simple increase in laboratory experience the students could gain. This study highlights gaps between the perceptions of students and teaching staff with regards to laboratory aims alongside revealing that all three groups held relatively simplified views of teaching laboratories.

    更新日期:2018-04-03
  • An experienced chemistry teacher's practical knowledge of teaching with practical work: the PCK perspective
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-01-17
    Bing Wei, Hao Liu

    We have examined an experienced chemistry teacher's pedagogical content knowledge (PCK) of teaching with practical work in China. Based on the well-known PCK model by Magnusson S. J., Krajcik J. and Borko H., (1999), Nature, sources, and development of pedagogical content knowledge for science teaching, in Gess-Newsome J. and Lederman N. G. (ed.), Examining pedagogical content knowledge: the construct and its implications for science education, Boston: Kluwer, pp. 95–132, we focused on how the participant's teaching orientations and relevant contextual factors shaped his practical knowledge of teaching with practical work. Data from multiple sources were collected and analysed over one semester (four months), including interviews, direct classroom observation, textbooks and lesson plans. Three conclusions were drawn from this study: (1) the participant held multidimensional and mixed science teaching orientations, (2) the participant's science teaching orientations shaped his knowledge and beliefs about students’ learning and the instructional strategies related to practical work, and (3) contextual factors exerted great influence on his PCK.

    更新日期:2018-04-03
  • A novel qualitative method to improve access, elicitation, and sample diversification for enhanced transferability applied to studying chemistry outreach
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-01-17
    Justin M. Pratt, Ellen J. Yezierski

    Conducting qualitative research in any discipline warrants two actions: accessing participants and eliciting their ideas. In chemistry education research, survey techniques have been used to increase access to participants and diversify samples. Interview tasks (such as card sorting, using demonstrations, and using simulations) have been used to elicit participant ideas. While surveys can increase participation and remove geographic barriers from studies, they typically lack the ability to obtain detailed, thick description of participant ideas, which are possible from in-person interviews. Minimal research in CER has examined how to harness technology to synthesize traditionally diverse research approaches to advance the field. This paper presents a novel method for interviewing research participants employing freely available technology to investigate student ideas about the purposes of conducting chemistry outreach, how success of an outreach event is evaluated, and student understanding of the chemistry content embedded in activities facilitated at events. As the outreach practitioner population comes from numerous institutions and is therefore geographically diverse, technology is necessary in order to gain access to these students. To elicit their ideas and remove barriers associated with rapport, interview tasks are adapted and implemented electronically. The description of a novel set of methods is coupled with evidence from the interviews to illustrate the trustworthiness of the data obtained and to support the method as a means to improve qualitative data collection in chemistry education research. These methods create a unique data collection environment for off-site investigations and are applicable to all disciplines, as they shed light on how qualitative research in the 21st century can increase the diversity of samples and improve the transferability of findings.

    更新日期:2018-04-03
  • Student perceptions of immediate feedback testing in student centered chemistry classes
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-01-08
    Jamie L. Schneider, Suzanne M. Ruder, Christopher F. Bauer

    Feedback is an important aspect of the learning process. The immediate feedback assessment technique (IF-AT®) form allows students to receive feedback on their answers during a testing event. Studies with introductory psychology students supported both perceived and real student learning gains when this form was used with testing. Knowing that negative student perceptions of innovative classroom techniques can create roadblocks, this research focused on gathering student responses to using IF-AT® forms for testing in general chemistry 1 and organic chemistry 2 classes at several institutions. Students’ perceptions on using the IF-AT® forms and how it influenced their thinking were gathered from a 16-item survey. The results of the student surveys are detailed and implementation strategies for using IF-AT® forms for chemistry testing are also outlined in this article.

    更新日期:2018-04-03
  • Low-achieving students’ attitudes towards learning chemistry and chemistry teaching methods
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-01-06
    P. Kousa, R. Kavonius, M. Aksela

    The aims of this study were to determine low-achieving students’ attitudes towards chemistry and how the attitudes differ within a low achieving group. The most preferred teaching methods were also defined. Empirical data (n = 2949) were collected by stratified sampling from fifteen-year-old Finnish lower-secondary school students as part of a Finnish National Board of Education assessment. The students were divided into five groups according to their achievement in the chemistry-exam. 159 of the students who had deficient exam results were defined as low-achieving (LA) students, and within that group non-native speakers, students with special needs and gender were selected as the background variables. Boys, non-native speakers and those who had special support had more positive attitudes towards chemistry within the LA group. The most preferred teaching methods in the low-achieving group were (i) visiting companies, institutes, museums and exhibitions; (ii) using the internet, videos, magazines and books for studying and (iii) small group working. According to the LA students their teachers should take more into account their wishes for teaching methods. This study suggests that more positive attitudes could lead to a better achievement when the teaching methods are preferred by most of the students. This paper proposes some ideas for both teachers and teacher training.

    更新日期:2018-04-03
  • Evaluating students' abilities to construct mathematical models from data using latent class analysis
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2018-01-03
    Alexandra Brandriet, Charlie A. Rupp, Katherine Lazenby, Nicole M. Becker

    Analyzing and interpreting data is an important science practice that contributes toward the construction of models from data; yet, there is evidence that students may struggle with making meaning of data. The study reported here focused on characterizing students’ approaches to analyzing rate and concentration data in the context of method of initial rates tasks, a type of task used to construct a rate law, which is a mathematical model that relates the reactant concentration to the rate. Here, we present a large-scale analysis (n = 768) of second-semester introductory chemistry students’ responses to three open-ended questions about how to construct rate laws from initial concentration and rate data. Students’ responses were coded based on the level of sophistication in their responses, and latent class analysis was then used to identify groups (i.e. classes) of students with similar response patterns across tasks. Here, we present evidence for a five-class model that included qualitatively distinct and increasingly sophisticated approaches to reasoning about the data. We compared the results from our latent class model to the correctness of students’ answers (i.e. reaction orders) and to a less familiar task, in which students were unable to use the control of variables strategy. The results showed that many students struggled to engage meaningfully with the data when constructing their rate laws. The students’ strategies may provide insight into how to scaffold students’ abilities to analyze data.

    更新日期:2018-01-15
  • A comparison of online and traditional chemistry lecture and lab
    Chem. Educ. Res. Pract. (IF 1.621) Pub Date : 2017-12-18
    E. K. Faulconer, J. C. Griffith, B. L. Wood, S. Acharyya, D. L. Roberts

    While the equivalence between online and traditional classrooms has been well researched, very little effort has been expended to do such comparisons for college level introductory chemistry. The existing literature has only one study that investigated chemistry lectures at an entire course level as opposed to particular course components such as individual topics or exams. Regarding lab courses, only one study is available and it involves moderating variables that are largely uncontrolled. In this work, we compared the student pass rates, withdrawal rates, and grade distributions between asynchronous online and traditional formats of an introductory chemistry lecture as well as its associated lab course. The study was based on the 823 university records available for the 2015–2016 academic year. Student pass and withdrawal rates between the two modes were quite similar and did not appear to be statistically significant. However, grade distributions for both the lecture and lab differed between the two learning modes, showing significant statistical associations. Online students were more likely to earn As in both lecture and lab while traditional in-person students were more likely to earn Cs or Ds. Further research should include replication of this study with a larger data set. Additionally, this study should be repeated in three to five years to determine if advances in course design, standardization and delivery platforms further reduce or eliminate differences between learning modes. Future studies should also use qualitative tools for a better understanding of why students fail or withdraw from courses.

    更新日期:2018-01-15
Some contents have been Reproduced with permission of the American Chemical Society.
Some contents have been Reproduced by permission of The Royal Society of Chemistry.
化学 • 材料 期刊列表