当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Confinement Impact for the Dynamics of Supported Metal Nanocatalyst
Small ( IF 13.3 ) Pub Date : 2018-06-08 , DOI: 10.1002/smll.201801586
Huimin Liu 1 , Hui Wang 2 , Zongwen Liu 1, 3 , Huajuan Ling 1 , Cuifeng Zhou 1 , Huawei Li 2, 4 , Catherine Stampfl 3, 5 , Xiaozhou Liao 3, 6 , Jiuling Wang 2, 4 , Xinghua Shi 2, 4 , Jun Huang 1, 3
Affiliation  

Supported metal nanoparticles play key roles in nanoelectronics, sensors, energy storage/conversion, and catalysts for the sustainable production of fuels and chemicals. Direct observation of the dynamic processes of nanocatalysts at high temperatures and the confinement of supports is of great significance to investigate nanoparticle structure and functions for practical utilization. Here, in situ high‐resolution transmission electron microscopy photos and videos are combined with dynamics simulations to reveal the real‐time dynamic behavior of Pt nanocatalysts at operation temperatures. Amorphous Pt surface on moving and deforming particles is the working structure during the high operation temperature rather than a static crystal surface and immobilization on supports as proposed before. The free rearrangement of the shape of Pt nanoparticles allows them to pass through narrow windows, which is generally considered to immobilize the particles. The Pt particles, no matter what their sizes, prefer to stay inside nanopores even when they are fast moving near an opening at temperatures up to 900 °C. The porous confinement also blocks the sintering of the particles under the confinement size of pores. These contribute to the continuous high activity and stability of Pt nanocatalysts inside nanoporous supports during a long‐term evaluation of catalytic reforming reaction.

中文翻译:

约束对负载型金属纳米催化剂动力学的影响

负载的金属纳米颗粒在纳米电子学,传感器,能量存储/转换和催化剂的可持续生产中起着关键作用,以可持续地生产燃料和化学品。直接观察纳米催化剂在高温下的动力学过程和载体的​​限制对研究纳米颗粒的结构和功能具有实际意义。在这里,将原位高分辨率透射电子显微镜照片和视频与动力学模拟相结合,以揭示Pt纳米催化剂在工作温度下的实时动态行为。在高工作温度下,运动和变形颗粒上的非晶Pt表面是工作结构,而不是静态晶体表面和固定在载体上的固定结构,如上所述。Pt纳米颗粒形状的自由重排使它们可以穿过狭窄的窗口,通常认为这是固定颗粒的。Pt颗粒,无论大小如何,都喜欢留在纳米孔内,即使它们在温度高达900°C的开口附近快速移动时也是如此。在孔的限制尺寸下,多孔限制也阻止了颗粒的烧结。在长期评估催化重整反应过程中,这些有助于纳米多孔载体内Pt纳米催化剂的连续高活性和稳定性。在孔的限制尺寸下,多孔限制也阻止了颗粒的烧结。在长期评估催化重整反应过程中,这些有助于纳米多孔载体内Pt纳米催化剂的连续高活性和稳定性。在孔的限制尺寸下,多孔限制也阻止了颗粒的烧结。在长期评估催化重整反应过程中,这些有助于纳米多孔载体内Pt纳米催化剂的连续高活性和稳定性。
更新日期:2018-06-08
down
wechat
bug