当前位置: X-MOL 学术Environ. Impact Assess. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A biophysical approach to the performance diagnosis of human–building energy interaction: Information ( bits ) modeling, algorithm, and indicators of energy flow complexity
Environmental Impact Assessment Review ( IF 6.122 ) Pub Date : 2018-09-01 , DOI: 10.1016/j.eiar.2018.05.007
Hwang Yi

Abstract This article addresses the utmost upstream impacts of human–building energy interaction by proposing a network-based model, algorithms, and indicators. Hypothesizing that human behavior is a key factor for the symbiotic development of building and the geobiosphere system, the author seeks emergy (spelled with an “m”)-information integrated measures to indicate dynamic system-level performance of the interaction with building energy flow topology. To validate the hypothesis and methods, four representative building cases were tested on the building form (envelope) of (i) a building with no occupant intervention (baseline), (ii) a building controlled by responsive human behavior (bioclimatic adaptation), (iii) a building with reinforced insulation and behavior-dominated control (passive design), and (iv) a net-zero energy building (NZEB). The results demonstrate that adaptive human behavior in building operation increases the information content and complexity of energy-flow networking, improving performance and sustainability. Findings also reveal that increasing information, complexity, and power (energy availability over time) parallel the general energetic features of developing biophysical systems (greater feedback, internalization, and recycling of materials and energies). It becames clear that active behavioral response is a dominant agent of sustainable environments even on a far broader system scale.

中文翻译:

人类-建筑能量相互作用性能诊断的生物物理学方法:信息(位)建模、算法和能量流复杂性指标

摘要 本文通过提出基于网络的模型、算法和指标来解决人类与建筑能源交互的最大上游影响。假设人类行为是建筑和地球生物圈系统共生发展的关键因素,作者寻求能值(用“m”拼写)-信息综合测度来表明与建筑能量流拓扑相互作用的动态系统级性能. 为了验证假设和方法,在以下建筑形式(围护结构)上测试了四个代表性建筑案例:(i)没有居住者干预的建筑(基线),(ii)由响应性人类行为(生物气候适应)控制的建筑,( iii) 具有强化绝缘和行为主导控制(被动设计)的建筑,以及 (iv) 净零能耗建筑 (NZEB)。结果表明,建筑运营中的适应性人类行为增加了能量流网络的信息内容和复杂性,提高了性能和可持续性。研究结果还表明,不断增加的信息、复杂性和能量(随时间推移的能量可用性)与发展生物物理系统的一般能量特征(更大的反馈、内化和材料和能量的循环利用)并行。很明显,即使在更广泛的系统规模上,积极的行为反应也是可持续环境的主要因素。和功率(随时间推移的能量可用性)与发展生物物理系统的一般能量特征(更大的反馈、内化和材料和能量的循环利用)平行。很明显,即使在更广泛的系统规模上,积极的行为反应也是可持续环境的主要因素。和功率(随时间推移的能量可用性)与发展生物物理系统的一般能量特征(更大的反馈、内化和材料和能量的循环利用)平行。很明显,即使在更广泛的系统规模上,积极的行为反应也是可持续环境的主要因素。
更新日期:2018-09-01
down
wechat
bug