当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sliding wear and friction characteristics of polymer nanocomposite PAEK-PDMS with nano-hydroxyapatite and nano-carbon fibres as fillers
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.9 ) Pub Date : 2018-06-06 , DOI: 10.1016/j.jmbbm.2018.06.006
Suman B. Iyer , Anshuman Dube , N.M. Dube , Pratik Roy , R.R.N. Sailaja

The development of a suitable polymeric bioactive composite with hydroxyapatite as a filler is one of the very actively pursued areas in bioapplications. This report concerns development of such a novel polymeric biocomposite viz. poly (aryl ether) ketone-poly (dimethylsiloxane) with a small percentage of nano carbon fibres and varying percentages of nanohydroxyapatite particulates as fillers. The earlier characterization of this material involving mechanical, thermal and bio-compatibility studies showed optimum improved behaviour at about 7% nanohydroxyapatite loading as reported elsewhere. In this study, the wear and friction response of this biocomposite was tested in air under dry sliding conditions against hard steel using a pin-on-disc apparatus. Interestingly, the adhesive wear characteristics of this nanocomposite with varying nanohydroxyapatite percentages showed a trend similar to that in other characteristics with lowest wear occurring around the same nanohydroxyapatite percentage. It was observed that the specific wear rate in this novel nanocomposite was exceptionally low [~ 10−8 (mm3/N-m)] compared to that in other similar polymer composites. The origin of this very low wear rate can be associated with the multiple strategies used in the preparation of this nanocomposite such as the use of poly (dimethylsiloxane) which is known to provide a cushioning effect in the matrix. In addition, the phosphate grafting of poly (dimethylsiloxane), the nanonature of both the fillers and their specific surface treatments using aminosilane for enhancing the matrix- filler interfacial bonding all of them seem to have played their expected beneficial roles resulting in the above very low wear rate. The earlier studies on this nanocomposite have shown improvement of the mechanical compressive strength with the addition of carbon nanofibres. Interestingly, here the friction coefficient of the nanocomposite with carbon nanofibres is consistently higher than that without carbon nano fibres for different nanohydroxyapatite percentages samples, for both low (5 N) as well as high (30 N) applied load. It could possibly be due to dislodged carbon nano fibres acting as a third body abrasive or fibres acting as weak links in the matrix filler network affecting the friction response. These wear and friction measurements have clearly brought out the various interesting aspects of the tribological response of the nanocomposite material and the intricate roles played by its matrix component poly (dimethylsiloxane) and the surface treated nano fillers nanohydroxyapatite and nano carbon fibre.



中文翻译:

以纳米羟基磷灰石和纳米碳纤维为填料的聚合物纳米复合PAEK-PDMS的滑动磨损和摩擦特性

用羟基磷灰石作为填料的合适的聚合物生物活性复合材料的开发是生物应用中非常积极追求的领域之一。该报告涉及这种新型聚合物生物复合材料的开发。聚(芳基醚)酮-聚(二甲基硅氧烷),具有少量的纳米碳纤维和不同百分比的纳米羟基磷灰石颗粒作为填充剂。涉及机械,热学和生物相容性研究的这种材料的早期表征表明,如在其他地方报道的那样,在约7%的纳米羟基磷灰石负载量下,该材料具有最佳的改善性能。在这项研究中,使用销钉盘设备在空气中在干燥滑动条件下针对硬钢测试了这种生物复合材料的磨损和摩擦响应。有趣的是,具有变化的纳米羟基磷灰石百分比的该纳米复合材料的粘附磨损特性显示出与其他特性相似的趋势,其中在相同的纳米羟基磷灰石百分比附近发生最低的磨损。据观察,这种新型纳米复合材料的比磨损率极低[〜10-8(毫米3/ Nm)]与其他类似的聚合物复合材料相比。这种非常低的磨损率的起因可能与制备这种纳米复合材料时使用的多种策略有关,例如使用已知在基质中提供缓冲作用的聚(二甲基硅氧烷)。此外,聚二甲基硅氧烷的磷酸盐接枝,填料的纳米性质以及使用氨基硅烷增强基质-填料界面键合的特定表面处理都似乎发挥了预期的有益作用,导致上述非常低磨损率。对该纳米复合材料的早期研究表明,通过添加碳纳米纤维可以改善机械抗压强度。有趣的是,在低(5 N)和高(30 N)施加载荷下,对于不同的纳米羟基磷灰石百分比样品,具有碳纳米纤维的纳米复合材料的摩擦系数始终高于不具有碳纳米纤维的纳米复合材料的摩擦系数。这可能是由于位移的碳纳米纤维充当了第三体磨料或纤维充当了基质填料网络中的薄弱环节,从而影响了摩擦响应。这些磨损和摩擦测量清楚地表明了纳米复合材料摩擦学响应的各个有趣方面,以及其基质组分聚二甲基硅氧烷和经表面处理的纳米填料纳米羟基磷灰石和纳米碳纤维所起的复杂作用。无论是低(5 N)还是高(30 N)的施加负载。这可能是由于位移的碳纳米纤维充当了第三体磨料或纤维充当了基质填料网络中的薄弱环节,从而影响了摩擦响应。这些磨损和摩擦测量清楚地表明了纳米复合材料摩擦学响应的各个有趣方面,以及其基质组分聚二甲基硅氧烷和经表面处理的纳米填料纳米羟基磷灰石和纳米碳纤维所起的复杂作用。无论是低(5 N)还是高(30 N)的施加负载。这可能是由于位移的碳纳米纤维充当了第三体磨料或纤维充当了基质填料网络中的薄弱环节,从而影响了摩擦响应。这些磨损和摩擦测量清楚地表明了纳米复合材料摩擦学响应的各个有趣方面,以及其基质组分聚二甲基硅氧烷和经表面处理的纳米填料纳米羟基磷灰石和纳米碳纤维所起的复杂作用。

更新日期:2018-06-06
down
wechat
bug