当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pearson's principle-inspired strategy for the synthesis of amorphous transition metal hydroxide hollow nanocubes for electrocatalytic oxygen evolution†
Materials Chemistry Frontiers ( IF 7 ) Pub Date : 2018-06-06 00:00:00 , DOI: 10.1039/c8qm00170g
Linlin Yang 1, 2, 3, 4 , Bin Zhang 1, 2, 3, 4 , Wenjie Ma 1, 2, 3, 4 , Yunchen Du 1, 2, 3, 4 , Xijiang Han 1, 2, 3, 4 , Ping Xu 1, 2, 3, 4
Affiliation  

Hollow nanostructures with higher surface area offer great advantages for electrocatalytic water splitting. Here, we demonstrate the fabrication of amorphous hollow M(OH)x (M = Fe, Co, Ni) nanocubes through a template-assisted route inspired by Pearson's hard and soft acid–base (HSAB) principle with Cu2O nanocubes with different sizes (50 nm, 500 nm) as the sacrificial templates. A comparative study of the electrocatalytic oxygen evolution reaction (OER) of the hollow M(OH)x nanocubes with a similar size indicates that Ni(OH)2 has better OER catalytic activity. It has been revealed that the metal oxyhydroxides formed at the surface are actually the real active species for the OER electrocatalysis. In particular, Ni(OH)2 nanocubes obtained by the Cu2O (50 nm) template provide the best OER activity, with a low overpotential of 349 mV vs. RHE to achieve a current density of 10 mA cm−2 and a low Tafel slope of 63 mV dec−1. The hollow metal hydroxide nanostructures through the Pearson's principle-inspired strategy can be highly efficient electrocatalysts for OER applications.

中文翻译:

皮尔森(Pearson)原理启发的策略,用于合成无定形过渡金属氢氧化物空心纳米立方体,用于电催化氧气的释放

具有较高表面积的中空纳米结构为电催化水分解提供了很大的优势。在这里,我们展示了通过皮尔逊的硬酸和软酸碱(HSAB)原理以及不同Cu 2 O纳米立方体的模板辅助途径,通过模板辅助途径制备了无定形空心M(OH)x(M = Fe,Co,Ni)纳米立方体。尺寸(50 nm,500 nm)作为牺牲模板。对具有类似尺寸的中空M(OH)x纳米立方体的电催化氧释放反应(OER)的比较研究表明,Ni(OH)2具有更好的OER催化活性。已经发现,在表面形成的金属羟基氧化物实际上是OER电催化的真正活性物质。特别是Ni(OH)2通过Cu 2 O(50 nm)模板获得的纳米立方体具有最佳的OER活性,相对于RHE具有349 mV的低过电势,可实现10 mA cm -2的电流密度和63 mV dec -1的低Tafel斜率。通过Pearson原理启发的策略,中空的金属氢氧化物纳米结构可以成为用于OER应用的高效电催化剂。
更新日期:2018-06-06
down
wechat
bug