当前位置: X-MOL 学术Adv. Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Perovskite Light‐Emitting Device Driven by Low‐Frequency Alternating Current Voltage
Advanced Optical Materials ( IF 9 ) Pub Date : 2018-05-31 , DOI: 10.1002/adom.201800206
Xuhai Liu 1 , Dejian Yu 1 , Chengxue Huo 1 , Xiufeng Song 1 , Yujie Gao 1 , Shengli Zhang 1 , Haibo Zeng 1
Affiliation  

Halide perovskite microplatelets (HPeMs) with ultrahigh crystallinity and large lateral dimension provide a good potential for realizing new micrometer‐scale light sources. However, the difficulty of obtaining uniform microplatelet thin films imposes the impediment for getting light sources in the conventional vertical configuration. Here, bright electroluminescence (EL) from a light‐emitting device based on solution‐processed large HPeMs is obtained using alternating current (AC) voltage in a planar device configuration. The bright and stable EL driven by 50 Hz demonstrates that this AC‐driven light‐emitting device can directly couple with household power supplies, thereby simplifying the electrical circuit modulation. The low‐frequency‐driven capability can be originated from the high charge carrier mobility and long carrier lifetime in perovskites, i.e., the hole accumulation can be reduced near the metal electrode to allow more hole injection, and more long‐lifetime holes can wait for injected electrons to recombine. Moreover, the shift of peak position and full‐wavelength‐at‐half‐maximum in the temperature‐dependent EL spectra reveals that the electric‐induced ionized scattering centers and related ion migration might have been neglected in the widely studied temperature‐dependent photoluminescence measurements. This work demonstrates an alternative operating mechanism and light‐emitting device configuration for obtaining EL from perovskites, offering a new manner to get novel micrometer‐scale perovskite light sources.

中文翻译:

低频交流电压驱动的钙钛矿发光装置

具有超高结晶度和较大横向尺寸的卤化钙钛矿微板(HPeMs)为实现新的微米级光源提供了良好的潜力。然而,获得均匀的微片状薄膜的困难强加了在常规垂直构型中获得光源的障碍。在这里,在平面设备配置中使用交流(AC)电压,可以从基于溶液处理的大型HPeM的发光设备获得明亮的电致发光(EL)。50 Hz驱动的明亮稳定的EL证明该交流驱动的发光设备可以直接与家用电源耦合,从而简化了电路调制。低频驱动能力源自钙钛矿中的高电荷载流子迁移率和长载流子寿命,即,可以减少金属电极附近的空穴积累以允许更多的空穴注入,并且更长寿命的空穴可以等待注入电子进行复合。此外,与温度相关的EL光谱中峰位置和半峰全波长的位移表明,在广泛研究的与温度相关的光致发光测量中,电诱导的电离散射中心和相关的离子迁移可能已被忽略。这项工作演示了一种用于从钙钛矿中获取EL的替代操作机制和发光设备配置,提供了一种获取新型微米级钙钛矿光源的新方法。可以减少金属电极附近的空穴积累,以允许更多的空穴注入,并且更长寿命的空穴可以等待注入的电子复合。此外,与温度相关的EL光谱中峰位置和半峰全波长的位移表明,在广泛研究的与温度相关的光致发光测量中,电诱导的电离散射中心和相关的离子迁移可能已被忽略。这项工作演示了一种用于从钙钛矿中获取EL的替代操作机制和发光设备配置,提供了一种获取新型微米级钙钛矿光源的新方法。可以减少金属电极附近的空穴积累,以允许更多的空穴注入,并且更长寿命的空穴可以等待注入的电子复合。此外,与温度相关的EL光谱中峰位置和半峰全波长的位移表明,在广泛研究的与温度相关的光致发光测量中,电诱导的电离散射中心和相关的离子迁移可能已被忽略。这项工作演示了一种用于从钙钛矿中获取EL的替代操作机制和发光设备配置,提供了一种获取新型微米级钙钛矿光源的新方法。与温度相关的EL光谱中峰位置和半峰全波长的位移表明,在广泛研究的与温度相关的光致发光测量中,电诱导的电离散射中心和相关的离子迁移可能已被忽略。这项工作演示了一种用于从钙钛矿中获取EL的替代操作机制和发光设备配置,提供了一种获取新型微米级钙钛矿光源的新方法。与温度相关的EL光谱中峰位置和半峰全波长的位移表明,在广泛研究的与温度相关的光致发光测量中,电诱导的电离散射中心和相关的离子迁移可能已被忽略。这项工作演示了一种用于从钙钛矿中获取EL的替代操作机制和发光设备配置,提供了一种获取新型微米级钙钛矿光源的新方法。
更新日期:2018-05-31
down
wechat
bug