当前位置: X-MOL 学术J. Anal. Appl. Pyrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Infrared Laser Radiation on Gas-Phase Pyrolysis of Ethane
Journal of Analytical and Applied Pyrolysis ( IF 6 ) Pub Date : 2018-09-01 , DOI: 10.1016/j.jaap.2018.05.017
N. Masyuk , A. Sherin , V.N. Snytnikov , Vl.N. Snytnikov

Abstract Pyrolysis of hydrocarbons is widely used for the production of light olefins. The pyrolytic processes are energy-consuming, proceeding at high wall reactor temperature and producing large amounts of undesired carbonaceous side-products. There is a demand for the search of lower temperature regimes together with the reduction of side products at high conversion efficiencies. The objective of our research is to decrease the temperature of walls of the pyrolytic reactor for the ethane thermal decomposition by CO 2 -laser radiation. Gas-phase laser induced pyrolysis of ethane was studied in a continuous flow tubular reactor. Introduction of infrared laser radiation into the pyrolysis reactor results in significant reduction of the reaction temperature threshold and noticeable increase of the ethane conversion at temperatures 870–970 K. At low-temperature range, 760–920 K, significant increase of ethane conversion was observed in the presence of ethylene comprising 5–10 % vol. of the initial gas mixture. Similar shift of temperature threshold was also observed with the increase of radiation power density. Analysis of volatile products demonstrated minor differences in the product content for both conventional and laser-induced pyrolysis, thus confirming the laser radiation function as an additional energy source without significant interference in the gas phase reactions. From practical point of view the laser induced pyrolysis opens the possibility to save energy on the account of reduced temperature. The low-temperature pyrolysis could additionally be promoted by the introduction of unsaturated hydrocarbons.

中文翻译:

红外激光辐射对乙烷气相热解的影响

摘要 烃类的热解被广泛用于生产轻质烯烃。热解过程耗能,在高壁反应器温度下进行并产生大量不需要的含碳副产物。需要寻找较低的温度范围以及以高转化效率减少副产物。我们研究的目的是通过CO 2 激光辐射降低乙烷热分解的热解反应器壁的温度。在连续流动管式反应器中研究了乙烷的气相激光诱导热解。将红外激光辐射引入热解反应器会显着降低反应温度阈值,并在 870-970 K 的温度下显着增加乙烷转化率。在 760-920 K 的低温范围内,在乙烯含量为 5-10% vol 的情况下观察到乙烷转化率显着增加。初始气体混合物。随着辐射功率密度的增加,也观察到类似的温度阈值变化。挥发性产物的分析表明,常规和激光诱导热解的产物含量略有不同,从而证实了激光辐射作为附加能源的功能,而不会显着干扰气相反应。从实用的角度来看,激光诱导热解开启了由于温度降低而节省能量的可能性。引入不饱和烃还可以促进低温热解。在包含 5-10% vol 的乙烯存在下观察到乙烷转化率的显着增加。初始气体混合物。随着辐射功率密度的增加,也观察到类似的温度阈值变化。挥发性产物的分析表明,常规和激光诱导热解的产物含量略有不同,从而证实了激光辐射作为附加能源的功能,而不会显着干扰气相反应。从实用的角度来看,激光诱导热解开启了由于温度降低而节省能量的可能性。引入不饱和烃还可以促进低温热解。在包含 5-10% vol 的乙烯存在下观察到乙烷转化率的显着增加。初始气体混合物。随着辐射功率密度的增加,也观察到类似的温度阈值变化。挥发性产物的分析表明,常规和激光诱导热解的产物含量略有不同,从而证实了激光辐射作为附加能源的功能,而不会显着干扰气相反应。从实用的角度来看,激光诱导热解开启了由于温度降低而节省能量的可能性。引入不饱和烃还可以促进低温热解。随着辐射功率密度的增加,也观察到类似的温度阈值变化。挥发性产物的分析表明,常规和激光诱导热解的产物含量略有不同,从而证实了激光辐射作为附加能源的功能,而不会显着干扰气相反应。从实用的角度来看,激光诱导热解开启了由于温度降低而节省能量的可能性。引入不饱和烃还可以促进低温热解。随着辐射功率密度的增加,也观察到类似的温度阈值变化。挥发性产物的分析表明,常规和激光诱导热解的产物含量略有不同,从而证实了激光辐射作为附加能源的功能,而不会显着干扰气相反应。从实用的角度来看,激光诱导热解开启了由于温度降低而节省能量的可能性。引入不饱和烃还可以促进低温热解。因此证实了激光辐射作为附加能源的功能而不会显着干扰气相反应。从实用的角度来看,激光诱导热解开启了由于温度降低而节省能量的可能性。引入不饱和烃还可以促进低温热解。因此证实了激光辐射作为附加能源的功能而不会显着干扰气相反应。从实用的角度来看,激光诱导热解开启了由于温度降低而节省能量的可能性。引入不饱和烃还可以促进低温热解。
更新日期:2018-09-01
down
wechat
bug