当前位置: X-MOL 学术Neuroscientist › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain
The Neuroscientist ( IF 5.6 ) Pub Date : 2018-05-25 , DOI: 10.1177/1073858418775027
Tsutomu Nakada 1 , Ingrid L. Kwee 2
Affiliation  

Advances in modern technology have transformed biomedical investigation. Molecular biological techniques have made it possible to analyze target protein functionality, while non-invasive molecular imaging made possible in vivo quantitative dynamic analysis of target physiological systems. As a result, widely held concepts have been challenged and old, often overlooked ideas have undergone dramatic revival (Nakada 2014; Orešković and Klarica 2010). The field of biological water dynamics has greatly advanced owing to the discovery of the water specific channel, aquaporin (AQP) (Benga and others 1986; Denker and others 1988). Paradoxically, however, this new discovery has also introduced significant confusion among investigators, resulting in misinterpretation of the findings. Even leading authorities in the field have quoted misleading information, such as AQP’s involvement in water movement across the barriers (Papadopoulos and Verkman 2013) or bulk flow in the paravascular pathway of gray matter (Iliff and others 2012). These misconceptions probably reflect the highly complex nature of brain water dynamics, which require a highly multidisciplinary approach. This review provides a succinct summary of the historical progression and modern understanding of barrier systems and interstitial fluid motion in an attempt to present a logical, systematic model of water dynamics in the brain.

中文翻译:

脑屏障内的流体动力学:脑中的间质流,淋巴流和脑脊髓液循环的当前概念。

现代技术的进步已经改变了生物医学研究。分子生物学技术使分析靶蛋白的功能成为可能,而无创分子成像使对靶生理系统的体内定量动态分析成为可能。结果,被广泛接受的概念受到了挑战,古老的,经常被忽视的思想经历了戏剧性的复兴(Nakada,2014年;Orešković和Klarica,2010年)。由于发现了水特异性通道水通道蛋白(AQP)(Benga等,1986; Denker等,1988),生物水动力学领域有了很大的发展。然而,自相矛盾的是,这一新发现也使研究人员之间产生了极大的困惑,导致对这些发现的误解。甚至该领域的领导机构都引用了误导性信息,例如AQP参与跨屏障的水运动(Papadopoulos和Verkman,2013年)或灰质的血管旁途径中的大流量(Iliff等人,2012年)。这些误解可能反映了大脑水动力学的高度复杂性,这需要高度多学科的研究方法。这篇综述简要概述了屏障系统和间质液运动的历史进程和现代理解,以期提出大脑中水动力学的逻辑系统模型。这需要高度多学科的方法。这篇综述简要概述了屏障系统和间质液运动的历史进程和现代理解,以期提出大脑中水动力学的逻辑系统模型。这需要高度多学科的方法。这篇综述简要概述了屏障系统和间质液运动的历史进程和现代理解,以期提出大脑中水动力学的逻辑系统模型。
更新日期:2018-05-25
down
wechat
bug