当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A rapidly room-temperature-synthesized Cd/ZnS:Cu nanocrystal photocatalyst for highly efficient solar-light-powered CO2 reduction
Applied Catalysis B: Environment and Energy ( IF 22.1 ) Pub Date : 2018-05-24 , DOI: 10.1016/j.apcatb.2018.05.066
Xianguang Meng , Guifu Zuo , Peixiao Zong , Hong Pang , Jian Ren , Xiongfeng Zeng , Shanshan Liu , Yi Shen , Wei Zhou , Jinhua Ye

An ideal photocatalyst that can promisingly convert CO2 should have suitable band gap and fully consider the activation of reaction. However, well-designed photocatalytic materials with these aspects are very limited. This study reports a highly efficient CO2 reduction photocatalyst based on ZnS nanocrystals which can be rapidly synthesized at room temperature and operated under solar light irradiation at all-inorganic reaction system. Two functional elements, Cu and Cd, are respectively used as dopant and cocatalyst of ZnS nanocrystal for selective CO2 reduction. Cu+ doping expands the photoabsorption of ZnS into visible light region and the simultaneous Cd2+ surface modification significantly improves the activity of CO2 reduction with 99% formic acid selectivity. A combination of charge density distribution and electronic state studies reveal that the Cd s orbital displays obviously higher density of states near band-edge with a relatively lower lying band center than that of Zn s orbital. This will greatly favor the charge transfer from conduction band of ZnS to the surface state created by Cd2+ for catalyzing CO2 reduction.



中文翻译:

一种快速室温合成的Cd / ZnS:Cu纳米晶体光催化剂,用于高效的太阳能CO 2还原

可以有希望地转化为CO 2的理想光催化剂应具有合适的带隙,并充分考虑反应的活化。然而,具有这些方面的设计良好的光催化材料非常有限。这项研究报告了一种基于ZnS纳米晶体的高效CO 2还原光催化剂,该催化剂可在室温下快速合成,并在全无机反应体系的太阳光照射下运行。铜和镉两种功能元素分别用作ZnS纳米晶体的掺杂剂和助催化剂,用于选择性还原CO 2。Cu +掺杂将ZnS的光吸收扩展到可见光区域和同时的Cd 2+表面改性以99%的甲酸选择性显着提高了CO 2还原活性。电荷密度分布和电子态研究的结合表明,Cd s轨道在带边缘附近的态密度明显高于Zn s轨道,且带中心相对较低。这将极大地促进电荷从ZnS的导带转移到Cd 2+生成的表面态,以催化CO 2还原。

更新日期:2018-05-24
down
wechat
bug