当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Positioning cyanamide defects in g-C3N4: Engineering energy levels and active sites for superior photocatalytic hydrogen evolution
Applied Catalysis B: Environment and Energy ( IF 22.1 ) Pub Date : 2018-05-23 , DOI: 10.1016/j.apcatb.2018.05.064
Jili Yuan , Xia Liu , Yanhong Tang , Yunxiong Zeng , Longlu Wang , Shuqu Zhang , Tao Cai , Yutang Liu , Shenglian Luo , Yong Pei , Chengbin Liu

g-C3N4 has recently emerged as a promising photocatalyst for solar energy conversion. Nonetheless, attempts to enhance its inherently low activity are rarely based on precise molecular tunability strategy. In this study, two-type cyanamide defects-grafting g-C3N4 (CCN) was prepared through the thermal polymerization of thiourea in the presence of KCl. Stable potassium isothiocyanate (KSCN) was in situ generated via thiourea isomerization and then reacted with different amino groups (NH2 and NH) in tri-s-triazine rings to obtain two-type cyanamide defects. Theoretical calculations and experiment results confirm that the ratio of the two-type cyanamide defects could be adjusted by KCl dosage, accompanying tunable energy levels of CCN. The charge carrier transfer and separation of CCN was greatly improved. Furthermore, the existence of cyanamide defects hindered the formation of intermolecular hydrogen bonds among g-C3N4, which facilitated the formation of porous structure and exposed more active sites for photocatalytic hydrogen evolution reaction (HER). As a result, the optimized photocatalyst (CCN-0.03) showed a high HER rate of 4.0 mmol g−1h−1, which was 5 times higher than 0.8 mmol g−1h−1 for pristine g-C3N4. And the apparent quantum efficiency reached up to 14.65% at 420 ± 10 nm. The findings deepen the understanding on precise molecular tuning of g-C3N4.



中文翻译:

在gC 3 N 4中定位氰胺缺陷:工程能级和活性位点,可产生优异的光催化氢

最近,gC 3 N 4成为一种有前途的用于太阳能转化的光催化剂。但是,很少尝试基于精确的分子可调性策略来增强其固有的低活性。在这项研究中,通过在KCl的存在下硫脲的热聚合反应制备了两种类型的氨基氰缺陷接枝物gC 3 N 4(CCN)。通过硫脲异构化原位生成稳定的异硫氰酸钾(KSCN),然后与不同的氨基(NH 2NH)在三-s-三嗪环中获得两种类型的氰胺缺陷。理论计算和实验结果证实,可以伴随着CCN的可调节能级,通过KCl剂量来调节两种氰胺缺陷的比例。CCN的载流子转移和分离得到了极大的改善。此外,氰胺缺陷的存在阻碍了gC 3 N 4之间分子间氢键的形成,这促进了多孔结构的形成,并暴露了更多的光催化氢释放反应(HER)活性位。结果,优化的光催化剂(CCN-0.03)显示出4.0 mmol g -1 h -1的高HER率,是0.8 mmol g -1 h的5倍。-1对于原始gC 3 N 4。在420±10 nm处,表观量子效率高达14.65%。这些发现加深了对gC 3 N 4精确分子调谐的理解。

更新日期:2018-05-23
down
wechat
bug